scholarly journals Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model

Energy ◽  
2019 ◽  
Vol 177 ◽  
pp. 433-444 ◽  
Author(s):  
Francesco Lombardi ◽  
Sergio Balderrama ◽  
Sylvain Quoilin ◽  
Emanuela Colombo
Author(s):  
Gini Ketelaar ◽  
Hermann Bähr ◽  
Shizhuo Liu ◽  
Harry Piening ◽  
Wim van der Veen ◽  
...  

Abstract. This paper describes several geodetic studies that consolidate the reliability and precision of monitoring subsidence due to hydrocarbon production: the deployment of Integrated Geodetic Reference Stations (IGRS); the application of high resolution InSAR; the comparison of different GNSS processing methodologies; the implementation of an efficient InSAR stochastic model, and the framework of integrated geodetic processing (levelling, GNSS, InSAR). The advances that have been made are applicable for any other subsidence monitoring project.


2021 ◽  
Vol 15 (4) ◽  
pp. 2115-2132
Author(s):  
Maximillian Van Wyk de Vries ◽  
Andrew D. Wickert

Abstract. We present Glacier Image Velocimetry (GIV), an open-source and easy-to-use software toolkit for rapidly calculating high-spatial-resolution glacier velocity fields. Glacier ice velocity fields reveal flow dynamics, ice-flux changes, and (with additional data and modelling) ice thickness. Obtaining glacier velocity measurements over wide areas with field techniques is labour intensive and often associated with safety risks. The recent increased availability of high-resolution, short-repeat-time optical imagery allows us to obtain ice displacement fields using “feature tracking” based on matching persistent irregularities on the ice surface between images and hence, surface velocity over time. GIV is fully parallelized and automatically detects, filters, and extracts velocities from large datasets of images. Through this coupled toolchain and an easy-to-use GUI, GIV can rapidly analyse hundreds to thousands of image pairs on a laptop or desktop computer. We present four example applications of the GIV toolkit in which we complement a glaciology field campaign (Glaciar Perito Moreno, Argentina) and calculate the velocity fields of small mid-latitude (Glacier d'Argentière, France) and tropical glaciers (Volcán Chimborazo, Ecuador), as well as very large glaciers (Vavilov Ice Cap, Russia). Fully commented MATLAB code and a stand-alone app for GIV are available from GitHub and Zenodo (see https://doi.org/10.5281/zenodo.4624831, Van Wyk de Vries, 2021a).


2021 ◽  
Author(s):  
Weizhi Wang ◽  
Csaba Pákozdi ◽  
Arun Kamath ◽  
Tobias Martin ◽  
Hans Bihs

Abstract A comprehensive understanding of the marine environment in the offshore area requires phase-resolved wave information. For the far-field wave propagation, computational efficiency is crucial, as large spatial and temporal scales are involved. For the near-field extreme wave events and wave impacts, high resolution is required to resolve the flow details and turbulence. The combined use of a computationally efficient large-scale model and a high-resolution local-scale solver provides a solution the combines accuracy and efficiency. This article introduces a coupling strategy between the efficient fully nonlinear potential flow (FNPF) solver REEF3D::FNPF and the high-fidelity computational fluid dynamics (CFD) model REEF3D::CFD within in the open-source hydrodynamics framework REEF3D. REEF3D::FNPF solves the Laplace equation together with the boundary conditions on a sigma-coordinate. The free surface boundary conditions are discretised using high-order finite difference methods. The Laplace equation for the velocity potential is solved with a conjugated gradient solver preconditioned with geometric multi-grid provided by the open-source library hypre. The model is fully parallelised following the domain decomposition strategy and the MPI protocol. The waves calculated with the FNPF solver are used as wave generation boundary condition for the CFD based numerical wave tank REEF3D::CFD. The CFD model employs an interface capturing two-phase flow approach that can resolve complex wave structure interaction, including breaking wave kinematics and turbulent effects. The presented hydrodynamic coupling strategy is tested for various wave conditions and the accuracy is fully assessed.


2019 ◽  
Author(s):  
Franklin D. Wolfe ◽  
Timothy A. Stahl ◽  
Pilar Villamor ◽  
Biljana Lukovic

Abstract. Here, we introduce an open source, semi-automated, Python-based graphical user interface (GUI) called the Monte Carlo Slip Statistics Toolkit (MCSST) for estimating dip slip on individual or bulk fault datasets. Using this toolkit, profiles are defined across fault scarps in high-resolution digital elevation models (DEMs) and then relevant fault scarp components are interactively identified (e.g., footwall, hanging wall, and scarp). Displacement statistics are calculated automatically using Monte Carlo simulation and can be conveniently visualized in Geographic Information Systems (GIS) for spatial analysis. Fault slip rates can also be calculated when ages of footwall and hanging wall surfaces are known, allowing for temporal analysis. This method allows for rapid analysis of tens to hundreds of faults in rapid succession within GIS and a Python coding environment. Application of this method may contribute to a wide range of regional and local earthquake geology studies with adequate high-resolution DEM coverage, both regional fault source characterization for seismic hazard and/or estimating geologic slip and strain rates, including creating long-term deformation maps. ArcGIS versions of these functions are available, as well ones that utilize free, open source Quantum GIS (QGIS) and Jupyter Notebook Python software.


2020 ◽  
Vol 6 (4) ◽  
pp. 487-497 ◽  
Author(s):  
Ned Horning ◽  
Erica Fleishman ◽  
Peter J. Ersts ◽  
Frank A. Fogarty ◽  
Martha Wohlfeil Zillig

2020 ◽  
Author(s):  
Duygu Tufekci-Enginar ◽  
M. Lutfi Suzen ◽  
G. Guney Dogan ◽  
Ahmet Cevdet Yalciner

<p>Tsunami simulations using high resolution datasets would always resemble the results that are closer to the reality. However, high resolution airborne or spaceborne local datasets have not yet been available for many regions and acquisition of this data is costly or might not even be possible for some locations. This hard-to-reach situation of high resolution datasets obliged researchers to work with open source datasets in their studies, which forces them to cope with the uncertainties of low spatial resolution.</p><p>Tsunami numerical models require both bathymetric and topographic data in order to calculate wave propagation in the water and inundation on the land. Leaving aside the availability of reliable bathymetric data, there are different open source global Digital Elevation Model (DEM) datasets, which are freely available. ASTER GDEM, SRTM and ALOS World 3D are present global open source DEMs that have highest spatial resolution of 30 meters. These three different sources of DEMs are generated using different technologies during data acquisition and different methodologies while processing. Even if they are the best available open source datasets, they all include variable sources of differences and errors.</p><p>This study aims evaluation of the sensitivity of open source DEM datasets against high resolution DEM datasets for tsunami hazard assessment and examination of accuracy of the simulations’ results. A small area in Silivri district of Istanbul is selected as study area, where 1m resolution of topographic data is available. Tsunami simulations are performed using NAMI DANCE GPU with topography data of 1m resolution based on LiDAR measurements and topography data of 30m resolution based on ASTER GDEM, SRTM and ALOS World 3D datasets. The resulted inundation on land and flow depth distributions are plotted and discussed with comparisons.</p><p> </p><p>Acknowledgement: MSc. Bora Yalciner and Assoc. Prof. Dr. Andrey Zaytsev are acknowledged for their contributions in developing tsunami numerical model NAMI DANCE GPU used in this study. The authors also thank Istanbul Metropolitan Municipality, Directorate of Earthquake and Ground Investigation for providing high quality data and close cooperation.</p><p>Keywords: tsunami, hazard assessment, numerical modeling, open source DEM, high-resolution DEM</p>


Sign in / Sign up

Export Citation Format

Share Document