Effects of oxygenated fuel pertaining to fuel analysis on diesel engine combustion and emission characteristics

Energy ◽  
2021 ◽  
pp. 122373
Author(s):  
M. Kalil Rahiman ◽  
S. Santhoshkumar ◽  
D. Subramaniam ◽  
A. Avinash ◽  
Arivalagan Pugazhendhi
2018 ◽  
Vol 34 (6) ◽  
pp. 2806-2813
Author(s):  
Pappula Bridjesh ◽  
Pitchaipillai Periyasamy ◽  
Narayanan Kannaiyan Geetha

This experimental investigation is an endeavour to substitute diesel with WPO as fuel on a diesel engine. Enhancing the physiochemical properties of WPO or with hardware modifications on the engine, the performance of engine could not be improved up to the mark. The physiochemical properties of WPO are enhanced by the use of composite additive, which is a mixture of soy lecithin and 2-ethylhexyl nitrate and to improve the in-cylinder air motion; subsequently to increase the swirl and turbulence, standard hemispherical combustion chamber is modified to toroidal spherical grooves combustion chamber. The results of combined effect of modifying the combustion chamber and addition of composite additive suggest that improvements in engine-out emissions can be obtained from current diesel engines by enhancing physiochemical properties of fuel and matching geometry of combustion chamber. Engine combustion and emission characteristics under various loads for various fuels under test are as well studied.


Author(s):  
Masoud Iranmanesh ◽  
J. P. Subrahmanyam ◽  
M. K. G. Babu

In this investigation, tests were conducted on a single cylinder DI diesel engine fueled with neat diesel and biodiesel as baseline fuel with addition of 5 to 20% DEE on a volume basis in steps of 5 vol.% as supplementary oxygenated fuel to analyze the simultaneous reduction of smoke and oxides of nitrogen. Some physicochemical properties of test fuels such as heating value, viscosity, specific gravity and distillation profile were also determined in accordance to the ASTM standards. The results obtained from the engine tests have shown a significant reduction in NOX emissions especially for biodiesel and a little decrease in smoke of DEE blends compared with baseline fuels. A global overview of the results has shown that the 5% DEE-Diesel fuel and 15% DEE-Biodiesel blend are the optimal blend based on performance and emission characteristics.


2012 ◽  
Vol 06 ◽  
pp. 425-430
Author(s):  
HYUNG-GON KIM ◽  
SEUNG-HUN CHOI ◽  
YOUNG-TAIG OH

Effect of oxygen components of fuels on exhaust emissions has been investigated by applying an indirect injection (IDI) diesel engine. This research analyzed variation and/or difference of the engine performance and exhaust emission characteristics of the IDI diesel engine by fueling the commercial diesel fuel and four different mixed ratios of oxygenated blended fuels. Effect of the exhaust gas recirculation (EGR) method was analyzed on the NOx emission characteristics. Ethylene glycol mono-n-butyl ether (EGBE) contains 27% of oxygen components in itself, and it is a kind of effective oxygenated fuel of mono-ether group. Smoke emission from the EGBE was reduced remarkably relative to the commercial diesel fuel. The EGBE can supply oxygen components sufficiently at higher diesel engine loads and speeds. It was found that a simultaneous reduction of the smoke and the NOx was achieved with the oxygenated fuel (10 vol-%) and the cooled EGR method (10%).


2013 ◽  
Vol 768 ◽  
pp. 206-212 ◽  
Author(s):  
K. Senthil Kumar ◽  
R. Thundil Karuppa Raj

The objective of this study is to investigate the feasibility of two-stage injection on combustion and exhaust emission characteristics in diesel (main fuel) ethanol (pilot fuel) fuelled single cylinder diesel engine. The pressure crank angle and net heat release rate diagrams revealed that increase in the ethanol pilot quantity causes an increase in the ignition delay in the pilot combustion and hence the main combustion due to diesel fuel is slightly influenced by the ethanol pilot fuel. The increase in the pilot injection decreases the NOx considerably. The concentration of soot emissions also decreases with increase in pilot injection. The CO emissions increases with increase in pilot injection and a slight increase in HC emission is observed.


2012 ◽  
Author(s):  
XiaoDan Cui ◽  
Teagun Kim ◽  
Yusuke Fujii ◽  
Jin Kusaka ◽  
Yasuhiro Daisho ◽  
...  

Author(s):  
S. K. Aggarwal ◽  
D. E. Longman

There has been significant progress in reducing NOx and particulate emissions from diesel engines. However, many challenges remain particularly in view of the global energy issues and increasingly stringent emission regulations. Several recent efforts have focused on achieving low-temperature, premixed combustion for simultaneously reducing NOx and PM emissions, but without any detrimental effect on fuel consumption and energy density. Various strategies being explored include homogeneously charged compression ignition (HCCI), reducing flame temperature through excessive EGR, enhancing premixed combustion by controlling injection parameters, and promoting premixing by using early injection and low cetane number fuels. The present study is aimed at examining the effects of injection timing, initial gas temperature, and cylinder and piston wall temperatures on the spray processes, and thereby on the ignition, combustion and emission characteristics in a diesel engine. The reacting two-phase flow field in a 1.9L, 4-cylinder GM diesel engine is simulated using a CFD code ‘CONVERGE’, which employs an innovative cut-cell Cartesian method for grid generation, and a semi-detailed reaction mechanism for n-heptane combustion. A 51.430 sector with a single hole is considered to simulate the 7-hole common-rail injector. Results indicate that while the initial gas temperature does not affect the spray and combustion behavior qualitatively, it modifies combustion temperatures and thus NOx emissions noticeably. On the other hand, the piston and cylinder wall temperatures qualitatively influence the spray behavior and thereby the combustion and emission behavior. The injection timing has a strong influence on the spray and mixture formation processes, and thus on the combustion and emission characteristics. Delaying the start of injection (SOI) can lead to a significant reduction in NOx formation with only a moderate increase in soot formation. A detailed analysis of the spray and combustion processes indicated two main fuel consumption regions, one near the piston bowl wall and the other in the main spray near the injector. Fuel consumption in the first region mainly follows the conventional diesel combustion model involving rich premixed burning and diffusion burning, while that in the second region involves premixed combustion. As the SOI is delayed, the spray impingement on the piston bowl wall increases, causing more fuel consumption in the first region, which leads to reduction in NOx but increase in soot formation, indicating a tradeoff between NOx and soot emissions. However, with further delay in the SOI, the amount of fuel consumption in the first region increases significantly, while that in the main spray region involves lean premixed combustion. The net effect is a significant reduction in NOx with only a moderate increase in soot emission. Future studies will focus on the effects of modifying the level of premixing and the ignition delay on diesel engine combustion and emission.


2012 ◽  
Vol 36 (4) ◽  
pp. 429-438 ◽  
Author(s):  
Chandrashekharapua Ramachandraiah Rajashekhar ◽  
Tumkur Krishnamurthy Chandrashekar ◽  
Chebbiyyan Umashankar ◽  
Rajagopal Harish Kumar

Combustion of biodiesels has inherent problems due to their high viscosity and low volatility. This paper relates the modification of engine combustion chamber design, for inducing turbulence to improve the combustibility of combustible mixture. A survey of literature shows that experimental studies have not been done on a tri-chambered piston for evaluating influence on the performance and emission characteristics using diesel blends as well. The objective of this work is to study the effect of combustion chamber geometry and injection pressure on performance and emissions of a biodiesel (Jatropha) fuelled multi-chambered piston diesel engine. The performance and emission characteristics were studied and it has been noticed that for the engine under consideration 200 bar injection pressure gives optimum performance.


Author(s):  
K. R. Senthilkumar ◽  
K. V. Gopalakrishnan ◽  
Pramod S. Mehta

In the present work, the effects of inducing in-cylinder turbulence through bluff bodies or internal jets are experimentally investigated on a direct injection diesel engine. The bluff bodies are placed horizontally across the piston cavity in the form of rods or rods wound with thin wire in different arrangements. The jet turbulence is introduced by holes on the piston crown, allowing a tangential entry of the working fluid into the piston cavity along the direction of swirl. The changes in performance, emission and combustion characteristics of the engine, due to these arrangements, are analyzed. In general, horizontal bluff bodies do not result in significant advantage in fuel economy and smoke levels, but some reduction in NOx concentration is observed. More importantly, it is observed that the internal jets introduced through the tangential holes showed improvement in the engine brake thermal efficiency and exhaust smoke level with a marginal increase in NOx concentration.


Sign in / Sign up

Export Citation Format

Share Document