A fuzzy regression causality approach to analyze relationship between electrical consumption and GDP

Energy ◽  
2021 ◽  
pp. 122459
Author(s):  
Diego Pandelara ◽  
Werner Kristjanpoller ◽  
Kevin Michell ◽  
Marcel C. Minutolo
2017 ◽  
Vol 2 (1) ◽  
pp. 59
Author(s):  
Nor Izana Mohd Shobri ◽  
Wan Noor Anira Hj Wan Ali ◽  
Norizan Mt Akhir ◽  
Siti Rasidah Md Sakip

The purpose of this study is to assess the carbon footprint emission at UiTM Perak, Seri Iskandar Campus. The assessment focuses on electrical power and transportation usage. Questionnaires were distributed to the staffs and students to survey their transportation usage in the year 2014 while for electrical consumption, the study used total energy consumed in the year 2014. Data was calculating with the formula by Green House Gas Protocol. Total carbon footprint produced by UiTM Perak, Seri Jskandar Campus in the year 2014 is 11842.09 MTC02' The result of the study is hoped to provide strategies for the university to reduce the carbon footprint emission.


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 195-203
Author(s):  
Eric Garrison ◽  
Joshua New

While urban-scale building energy modeling is becoming increasingly common, it currently lacks standards, guidelines, or empirical validation against measured data. Empirical validation necessary to enable best practices is becoming increasingly tractable. The growing prevalence of advanced metering infrastructure has led to significant data regarding the energy consumption within individual buildings, but is something utilities and countries are still struggling to analyze and use wisely. In partnership with the Electric Power Board of Chattanooga, Tennessee, a crude OpenStudio/EnergyPlus model of over 178,000 buildings has been created and used to compare simulated energy against actual, 15-min, whole-building electrical consumption of each building. In this study, classifying building type is treated as a use case for quantifying performance associated with smart meter data. This article attempts to provide guidance for working with advanced metering infrastructure for buildings related to: quality control, pathological data classifications, statistical metrics on performance, a methodology for classifying building types, and assess accuracy. Advanced metering infrastructure was used to collect whole-building electricity consumption for 178,333 buildings, define equations for common data issues (missing values, zeros, and spiking), propose a new method for assigning building type, and empirically validate gaps between real buildings and existing prototypes using industry-standard accuracy metrics.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 234
Author(s):  
Karthik Subramanian ◽  
Shantam Tandon

Power factor is the ratio of the real current or voltage received by a load to the root mean square (rms) value of the current or voltage that was supposed to be acquired by the same load. The fact that the two become different is due to the presence of reactive power in the circuit which gets dissipated.Improving the power factor means reducing the phase difference between voltage and current. Since majority of the loads are of inductive nature, they require some amount of reactive power for them to function. Therefore, for the better use of electrical appliances with minimum amount of electrical consumption, the power factor should necessarily be increased and should be brought near to 1. This can be easily done by the help of Automatic Power Factor Correction Capacitors and Active filters.  


Sign in / Sign up

Export Citation Format

Share Document