scholarly journals Effect of slickwater-alternate-slurry injection on proppant transport at field scales: A hybrid approach combining experiments and deep learning

Energy ◽  
2021 ◽  
pp. 122987
Author(s):  
Lei Hou ◽  
Yiyan Cheng ◽  
Xiaoyu Wang ◽  
Jianhua Ren ◽  
Xueyu Geng
2020 ◽  
pp. 1-10
Author(s):  
Colin J. McMahon ◽  
Justin T. Tretter ◽  
Theresa Faulkner ◽  
R. Krishna Kumar ◽  
Andrew N. Redington ◽  
...  

Abstract Objective: This study investigated the impact of the Webinar on deep human learning of CHD. Materials and methods: This cross-sectional survey design study used an open and closed-ended questionnaire to assess the impact of the Webinar on deep learning of topical areas within the management of the post-operative tetralogy of Fallot patients. This was a quantitative research methodology using descriptive statistical analyses with a sequential explanatory design. Results: One thousand-three-hundred and seventy-four participants from 100 countries on 6 continents joined the Webinar, 557 (40%) of whom completed the questionnaire. Over 70% of participants reported that they “agreed” or “strongly agreed” that the Webinar format promoted deep learning for each of the topics compared to other standard learning methods (textbook and journal learning). Two-thirds expressed a preference for attending a Webinar rather than an international conference. Over 80% of participants highlighted significant barriers to attending conferences including cost (79%), distance to travel (49%), time commitment (51%), and family commitments (35%). Strengths of the Webinar included expertise, concise high-quality presentations often discussing contentious issues, and the platform quality. The main weakness was a limited time for questions. Just over 53% expressed a concern for the carbon footprint involved in attending conferences and preferred to attend a Webinar. Conclusion: E-learning Webinars represent a disruptive innovation, which promotes deep learning, greater multidisciplinary participation, and greater attendee satisfaction with fewer barriers to participation. Although Webinars will never fully replace conferences, a hybrid approach may reduce the need for conferencing, reduce carbon footprint. and promote a “sustainable academia”.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2181
Author(s):  
Rafik Nafkha ◽  
Tomasz Ząbkowski ◽  
Krzysztof Gajowniczek

The electricity tariffs available to customers in Poland depend on the connection voltage level and contracted capacity, which reflect the customer demand profile. Therefore, before connecting to the power grid, each consumer declares the demand for maximum power. This amount, referred to as the contracted capacity, is used by the electricity provider to assign the proper connection type to the power grid, including the size of the security breaker. Maximum power is also the basis for calculating fixed charges for electricity consumption, which is controlled and metered through peak meters. If the peak demand exceeds the contracted capacity, a penalty charge is applied to the exceeded amount, which is up to ten times the basic rate. In this article, we present several solutions for entrepreneurs based on the implementation of two-stage and deep learning approaches to predict maximal load values and the moments of exceeding the contracted capacity in the short term, i.e., up to one month ahead. The forecast is further used to optimize the capacity volume to be contracted in the following month to minimize network charge for exceeding the contracted level. As confirmed experimentally with two datasets, the application of a multiple output forecast artificial neural network model and a genetic algorithm (two-stage approach) for load optimization delivers significant benefits to customers. As an alternative, the same benefit is delivered with a deep learning architecture (hybrid approach) to predict the maximal capacity demands and, simultaneously, to determine the optimal capacity contract.


2021 ◽  
Author(s):  
Sidra Mehtab ◽  
Jaydip Sen

Prediction of future movement of stock prices has been a subject matter of many research work. On one hand, we have proponents of the Efficient Market Hypothesis who claim that stock prices cannot be predicted, on the other hand, there are propositions illustrating that, if appropriately modelled, stock prices can be predicted with a high level of accuracy. There is also a gamut of literature on technical analysis of stock prices where the objective is to identify patterns in stock price movements and profit from it. In this work, we propose a hybrid approach for stock price prediction using machine learning and deep learning-based methods. We select the NIFTY 50 index values of the National Stock Exchange (NSE) of India, over a period of four years: 2015 – 2018. Based on the NIFTY data during 2015 – 2018, we build various predictive models using machine learning approaches, and then use those models to predict the “Close” value of NIFTY 50 for the year 2019, with a forecast horizon of one week, i.e., five days. For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual “Close” values of NIFTY index, various regression models are built. We, then, augment our predictive power of the models by building a deep learning-based regression model using Convolutional Neural Network (CNN) with a walk-forward validation. The CNN model is fine-tuned for its parameters so that the validation loss stabilizes with increasing number of iterations, and the training and validation accuracies converge. We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting, number of sub-models used in the overall models and, size of the input data for training the models. Extensive results are presented on various metrics for all classification and regression models. The results clearly indicate that CNN-based multivariate forecasting model is the most effective and accurate in predicting the movement of NIFTY index values with a weekly forecast horizon.


2019 ◽  
Author(s):  
Suhas Srinivasan ◽  
Nathan T. Johnson ◽  
Dmitry Korkin

AbstractSingle-cell RNA sequencing (scRNA-seq) is a recent technology that enables fine-grained discovery of cellular subtypes and specific cell states. It routinely uses machine learning methods, such as feature learning, clustering, and classification, to assist in uncovering novel information from scRNA-seq data. However, current methods are not well suited to deal with the substantial amounts of noise that is created by the experiments or the variation that occurs due to differences in the cells of the same type. Here, we develop a new hybrid approach, Deep Unsupervised Single-cell Clustering (DUSC), that integrates feature generation based on a deep learning architecture with a model-based clustering algorithm, to find a compact and informative representation of the single-cell transcriptomic data generating robust clusters. We also include a technique to estimate an efficient number of latent features in the deep learning model. Our method outperforms both classical and state-of-the-art feature learning and clustering methods, approaching the accuracy of supervised learning. The method is freely available to the community and will hopefully facilitate our understanding of the cellular atlas of living organisms as well as provide the means to improve patient diagnostics and treatment.


2021 ◽  
pp. 1-15
Author(s):  
Savaridassan Pankajashan ◽  
G. Maragatham ◽  
T. Kirthiga Devi

Anomaly-based detection is coupled with recognizing the uncommon, to catch the unusual activity, and to find the strange action behind that activity. Anomaly-based detection has a wide scope of critical applications, from bank application security to regular sciences to medical systems to marketing apps. Anomaly-based detection adopted by various Machine Learning techniques is really a type of system that consists of artificial intelligence. With the ever-expanding volume and new sorts of information, for example, sensor information from an incontestably enormous amount of IoT devices and from network flow data from cloud computing, it is implicitly understood without surprise that there is a developing enthusiasm for having the option to deal with more conclusions automatically by means of AI and ML applications. But with respect to anomaly detection, many applications of the scheme are simply the passion for detection. In this paper, Machine Learning (ML) techniques, namely the SVM, Isolation forest classifiers experimented and with reference to Deep Learning (DL) techniques, the proposed DA-LSTM (Deep Auto-Encoder LSTM) model are adopted for preprocessing of log data and anomaly-based detection to get better performance measures of detection. An enhanced LSTM (long-short-term memory) model, optimizing for the suitable parameter using a genetic algorithm (GA), is utilized to recognize better the anomaly from the log data that is filtered, adopting a Deep Auto-Encoder (DA). The Deep Neural network models are utilized to change over unstructured log information to training ready features, which are reasonable for log classification in detecting anomalies. These models are assessed, utilizing two benchmark datasets, the Openstack logs, and CIDDS-001 intrusion detection OpenStack server dataset. The outcomes acquired show that the DA-LSTM model performs better than other notable ML techniques. We further investigated the performance metrics of the ML and DL models through the well-known indicator measurements, specifically, the F-measure, Accuracy, Recall, and Precision. The exploratory conclusion shows that the Isolation Forest, and Support vector machine classifiers perform roughly 81%and 79%accuracy with respect to the performance metrics measurement on the CIDDS-001 OpenStack server dataset while the proposed DA-LSTM classifier performs around 99.1%of improved accuracy than the familiar ML algorithms. Further, the DA-LSTM outcomes on the OpenStack log data-sets show better anomaly detection compared with other notable machine learning models.


2020 ◽  
Vol 10 (15) ◽  
pp. 5191
Author(s):  
Yıldız Karadayı ◽  
Mehmet N. Aydin ◽  
A. Selçuk Öğrenci

Multivariate time-series data with a contextual spatial attribute have extensive use for finding anomalous patterns in a wide variety of application domains such as earth science, hurricane tracking, fraud, and disease outbreak detection. In most settings, spatial context is often expressed in terms of ZIP code or region coordinates such as latitude and longitude. However, traditional anomaly detection techniques cannot handle more than one contextual attribute in a unified way. In this paper, a new hybrid approach based on deep learning is proposed to solve the anomaly detection problem in multivariate spatio-temporal dataset. It works under the assumption that no prior knowledge about the dataset and anomalies are available. The architecture of the proposed hybrid framework is based on an autoencoder scheme, and it is more efficient in extracting features from the spatio-temporal multivariate datasets compared to the traditional spatio-temporal anomaly detection techniques. We conducted extensive experiments using buoy data of 2005 from National Data Buoy Center and Hurricane Katrina as ground truth. Experiments demonstrate that the proposed model achieves more than 10% improvement in accuracy over the methods used in the comparison where our model jointly processes the spatial and temporal dimensions of the contextual data to extract features for anomaly detection.


Sign in / Sign up

Export Citation Format

Share Document