scholarly journals A Hybrid Deep Learning Framework for Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data

2020 ◽  
Vol 10 (15) ◽  
pp. 5191
Author(s):  
Yıldız Karadayı ◽  
Mehmet N. Aydin ◽  
A. Selçuk Öğrenci

Multivariate time-series data with a contextual spatial attribute have extensive use for finding anomalous patterns in a wide variety of application domains such as earth science, hurricane tracking, fraud, and disease outbreak detection. In most settings, spatial context is often expressed in terms of ZIP code or region coordinates such as latitude and longitude. However, traditional anomaly detection techniques cannot handle more than one contextual attribute in a unified way. In this paper, a new hybrid approach based on deep learning is proposed to solve the anomaly detection problem in multivariate spatio-temporal dataset. It works under the assumption that no prior knowledge about the dataset and anomalies are available. The architecture of the proposed hybrid framework is based on an autoencoder scheme, and it is more efficient in extracting features from the spatio-temporal multivariate datasets compared to the traditional spatio-temporal anomaly detection techniques. We conducted extensive experiments using buoy data of 2005 from National Data Buoy Center and Hurricane Katrina as ground truth. Experiments demonstrate that the proposed model achieves more than 10% improvement in accuracy over the methods used in the comparison where our model jointly processes the spatial and temporal dimensions of the contextual data to extract features for anomaly detection.

2021 ◽  
Vol 12 (2) ◽  
pp. 1-18
Author(s):  
Jessamyn Dahmen ◽  
Diane J. Cook

Anomaly detection techniques can extract a wealth of information about unusual events. Unfortunately, these methods yield an abundance of findings that are not of interest, obscuring relevant anomalies. In this work, we improve upon traditional anomaly detection methods by introducing Isudra, an Indirectly Supervised Detector of Relevant Anomalies from time series data. Isudra employs Bayesian optimization to select time scales, features, base detector algorithms, and algorithm hyperparameters that increase true positive and decrease false positive detection. This optimization is driven by a small amount of example anomalies, driving an indirectly supervised approach to anomaly detection. Additionally, we enhance the approach by introducing a warm-start method that reduces optimization time between similar problems. We validate the feasibility of Isudra to detect clinically relevant behavior anomalies from over 2M sensor readings collected in five smart homes, reflecting 26 health events. Results indicate that indirectly supervised anomaly detection outperforms both supervised and unsupervised algorithms at detecting instances of health-related anomalies such as falls, nocturia, depression, and weakness.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 120043-120065
Author(s):  
Kukjin Choi ◽  
Jihun Yi ◽  
Changhwa Park ◽  
Sungroh Yoon

Sensor Review ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Jinghan Du ◽  
Haiyan Chen ◽  
Weining Zhang

Purpose In large-scale monitoring systems, sensors in different locations are deployed to collect massive useful time-series data, which can help in real-time data analytics and its related applications. However, affected by hardware device itself, sensor nodes often fail to work, resulting in a common phenomenon that the collected data are incomplete. The purpose of this study is to predict and recover the missing data in sensor networks. Design/methodology/approach Considering the spatio-temporal correlation of large-scale sensor data, this paper proposes a data recover model in sensor networks based on a deep learning method, i.e. deep belief network (DBN). Specifically, when one sensor fails, the historical time-series data of its own and the real-time data from surrounding sensor nodes, which have high similarity with a failure observed using the proposed similarity filter, are collected first. Then, the high-level feature representation of these spatio-temporal correlation data is extracted by DBN. Moreover, to determine the structure of a DBN model, a reconstruction error-based algorithm is proposed. Finally, the missing data are predicted based on these features by a single-layer neural network. Findings This paper collects a noise data set from an airport monitoring system for experiments. Various comparative experiments show that the proposed algorithms are effective. The proposed data recovery model is compared with several other classical models, and the experimental results prove that the deep learning-based model can not only get a better prediction accuracy but also get a better performance in training time and model robustness. Originality/value A deep learning method is investigated in data recovery task, and it proved to be effective compared with other previous methods. This might provide a practical experience in the application of a deep learning method.


2019 ◽  
Vol 38 ◽  
pp. 233-240 ◽  
Author(s):  
Mattia Carletti ◽  
Chiara Masiero ◽  
Alessandro Beghi ◽  
Gian Antonio Susto

Aerospace ◽  
2019 ◽  
Vol 6 (11) ◽  
pp. 117 ◽  
Author(s):  
Luis Basora ◽  
Xavier Olive ◽  
Thomas Dubot

Anomaly detection is an active area of research with numerous methods and applications. This survey reviews the state-of-the-art of data-driven anomaly detection techniques and their application to the aviation domain. After a brief introduction to the main traditional data-driven methods for anomaly detection, we review the recent advances in the area of neural networks, deep learning and temporal-logic based learning. In particular, we cover unsupervised techniques applicable to time series data because of their relevance to the aviation domain, where the lack of labeled data is the most usual case, and the nature of flight trajectories and sensor data is sequential, or temporal. The advantages and disadvantages of each method are presented in terms of computational efficiency and detection efficacy. The second part of the survey explores the application of anomaly detection techniques to aviation and their contributions to the improvement of the safety and performance of flight operations and aviation systems. As far as we know, some of the presented methods have not yet found an application in the aviation domain. We review applications ranging from the identification of significant operational events in air traffic operations to the prediction of potential aviation system failures for predictive maintenance.


Author(s):  
Taesung Kim ◽  
Jinhee Kim ◽  
Wonho Yang ◽  
Hunjoo Lee ◽  
Jaegul Choo

To prevent severe air pollution, it is important to analyze time-series air quality data, but this is often challenging as the time-series data is usually partially missing, especially when it is collected from multiple locations simultaneously. To solve this problem, various deep-learning-based missing value imputation models have been proposed. However, often they are barely interpretable, which makes it difficult to analyze the imputed data. Thus, we propose a novel deep learning-based imputation model that achieves high interpretability as well as shows great performance in missing value imputation for spatio-temporal data. We verify the effectiveness of our method through quantitative and qualitative results on a publicly available air-quality dataset.


2020 ◽  
Vol 12 (23) ◽  
pp. 4000
Author(s):  
Petteri Nevavuori ◽  
Nathaniel Narra ◽  
Petri Linna ◽  
Tarmo Lipping

Unmanned aerial vehicle (UAV) based remote sensing is gaining momentum worldwide in a variety of agricultural and environmental monitoring and modelling applications. At the same time, the increasing availability of yield monitoring devices in harvesters enables input-target mapping of in-season RGB and crop yield data in a resolution otherwise unattainable by openly availabe satellite sensor systems. Using time series UAV RGB and weather data collected from nine crop fields in Pori, Finland, we evaluated the feasibility of spatio-temporal deep learning architectures in crop yield time series modelling and prediction with RGB time series data. Using Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) networks as spatial and temporal base architectures, we developed and trained CNN-LSTM, convolutional LSTM and 3D-CNN architectures with full 15 week image frame sequences from the whole growing season of 2018. The best performing architecture, the 3D-CNN, was then evaluated with several shorter frame sequence configurations from the beginning of the season. With 3D-CNN, we were able to achieve 218.9 kg/ha mean absolute error (MAE) and 5.51% mean absolute percentage error (MAPE) performance with full length sequences. The best shorter length sequence performance with the same model was 292.8 kg/ha MAE and 7.17% MAPE with four weekly frames from the beginning of the season.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ayush Sinha ◽  
Raghav Tayal ◽  
Aamod Vyas ◽  
Pankaj Pandey ◽  
O. P. Vyas

Power has totally different attributes than other material commodities as electrical energy stockpiling is a costly phenomenon. Since it should be generated when demanded, it is necessary to forecast its demand accurately and efficiently. As electrical load data is represented through time series pattern having linear and non-linear characteristics, it needs a model that may handle this behavior well in advance. This paper presents a scalable and hybrid approach for forecasting the power load based on Vector Auto Regression (VAR) and hybrid deep learning techniques like Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN). CNN and LSTM models are well known for handling time series data. The VAR model separates the linear pattern in time series data, and CNN-LSTM is utilized to model non-linear patterns in data. CNN-LSTM works as CNN can extract complex features from electricity data, and LSTM can model temporal information in data. This approach can derive temporal and spatial features of electricity data. The experiment established that the proposed VAR-CNN-LSTM(VACL) hybrid approach forecasts better than more recent deep learning methods like Multilayer Perceptron (MLP), CNN, LSTM, MV-KWNN, MV-ANN, Hybrid CNN-LSTM and statistical techniques like VAR, and Auto Regressive Integrated Moving Average (ARIMAX). Performance metrics such as Mean Square Error, Root Mean Square Error, and Mean Absolute Error have been used to evaluate the performance of the discussed approaches. Finally, the efficacy of the proposed model is established through comparative studies with state-of-the-art models on Household Power Consumption Dataset (UCI machine learning repository) and Ontario Electricity Demand dataset (Canada).


Sign in / Sign up

Export Citation Format

Share Document