Influence of finite element model, load-sharing and load distribution on crack propagation path in spur gear drive

2020 ◽  
Vol 110 ◽  
pp. 104383 ◽  
Author(s):  
Rama Thirumurugan ◽  
N. Gnanasekar
2019 ◽  
pp. 147592171986572
Author(s):  
Chang Qi ◽  
Yang Weixi ◽  
Liu Jun ◽  
Gao Heming ◽  
Meng Yao

Fatigue crack propagation is one of the main problems in structural health monitoring. For the safety and operability of the metal structure, it is necessary to monitor the fatigue crack growth process of the structure in real time. In order to more accurately monitor the expansion of fatigue cracks, two kinds of sensors are used in this article: strain gauges and piezoelectric transducers. A model-based inverse finite element model algorithm is proposed to perform pattern recognition of fatigue crack length, and the fatigue crack monitoring experiment is carried out to verify the algorithm. The strain spectra of the specimen under cyclic load in the simulation and experimental crack propagation are obtained, respectively. The active lamb wave technique is also used to monitor the crack propagation. The relationship between the crack length and the lamb wave characteristic parameter is established. In order to improve the recognition accuracy of the crack propagation mode, the random forest and inverse finite element model algorithms are used to identify the crack length, and the Dempster–Shafer evidence theory is used as data fusion to integrate the conclusion of the two algorithms to make a more accountable and correct judge of the crack length. An experiment has been conducted to demonstrate the effectiveness of the method.


Author(s):  
Hui Ma ◽  
Jian Yang ◽  
Rongze Song ◽  
Suyan Zhang ◽  
Bangchun Wen

Considering tip relief, a finite element model of a spur gear pair in mesh is established by ANSYS software. Time-varying mesh stiffness under different amounts of tip relief is calculated based on the finite element model. Then, a finite element model of a geared rotor system is developed by MATLAB software considering the effects of time-varying mesh stiffness and constant load torque. Emphasis is given to the effects of tip relief on the lateral–torsional coupling vibration responses of the system. The results show that as the amount of tip relief increases, the saltation of time-varying mesh stiffness reduces at the position of approach action and transition mesh region from the single tooth to double tooth. A number of primary resonances and some super-harmonic of gears 1 and 2 are excited by time-varying mesh stiffness in amplitude frequency responses. As the amount of tip relief increases, some super-harmonic responses change due to the variation in the higher frequency components of time-varying mesh stiffness. After tip relief, the vibration and meshing force decrease obviously at lower mesh frequency range except at some resonance frequencies; however, tip relief is not effective in reducing the vibration at higher mesh frequency range. The amplitude fluctuation of the vibration acceleration reduces evidently after considering tip relief, which is not remarkable with the increase of meshing frequency.


2015 ◽  
Vol 665 ◽  
pp. 173-176 ◽  
Author(s):  
Zdeněk Majer ◽  
Luboš Náhlík ◽  
Pavel Hutař

The particulate composites with glass matrix are widely used in many engineering applications. The mismatch of coefficients of thermal expansion during the fabrication process usually causes the presence of the residual stresses around particles. The influence and the understanding of the effects of residual stresses on the material response is required. The main aim of the present paper was to create a two-dimensional finite element model to analyze the influence of residual stresses on micro-crack behavior of glass and ceramics-based particulate composites. The maximum tangential stress criterion (MTS) was used to predict the direction of the micro-crack propagation. The modelled material was a kind of Low Temperature Co-fired Ceramics (LTCC) containing alumina particles embedded in a glass matrix. The influence of the micro-crack length and magnitude of loading on the micro-crack propagation path were investigated. The finite element software ANSYS was used. Conclusions of this paper can contribute to a better understanding of the propagation of micro-cracks in particulate composites in the field of residual stresses.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Ignacio Gonzalez-Perez ◽  
Alfonso Fuentes-Aznar

A new finite element model for stress analysis of gear drives is proposed. Tie-surface constraints are applied at each tooth of the gear model to obtain meshes that can be independently defined: a finer mesh at contact surfaces and fillet and a coarser mesh in the remaining part of the tooth. Tie-surface constraints are also applied for the connection of several teeth in the model. The model is validated by application of the Hertz's theory in a spiral bevel gear drive with localized bearing contact and by observation of convergency of contact and bending stresses. Maximum contact pressure, maximum Mises stress, maximum Tresca stress, maximum major principal stress, and loaded transmission errors are evaluated along two cycles of meshing. The effects of the boundary conditions that models with three, five, seven, and all the teeth of the gear drive provide on the above-mentioned variables are discussed. Several numerical examples are presented.


Sign in / Sign up

Export Citation Format

Share Document