Initial losing behavior of pre-tightening force for threaded fastener during repeated tightening

Author(s):  
Mingpo Zheng ◽  
Zhifeng Liu ◽  
Xing Yan ◽  
Nana Niu ◽  
Tao Zhang ◽  
...  
Keyword(s):  
2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hiroki Shiba ◽  
Yuji Sato ◽  
Junichi Furuya ◽  
Tokiko Osawa ◽  
Akio Isobe ◽  
...  

Abstract Background Screw breakage and loosening are the most common mechanical complications associated with implant treatment, and they may occur due to excess or inadequate screw tightening torque. When fastening and fixing the implant superstructure, screws are tightened using a torque wrench, which is essential for an accurate tightening force. However, the characteristics of the torque wrench have not been fully verified. Therefore, we aimed to clarify the factors affecting the torque with a focus on beam-type torque wrenches, which are the main types of wrenches. Methods The torque values generated by beam-type torque wrenches from eight manufacturers were measured using a torque gauge. To investigate the influence of the location of the beam relative to the scale, measurements were performed with a scale aligned with the trailing edge, center, and leading edge of the beam respectively. Additionally, measurements were taken at 90°, 60°, and 30° to examine the effect of the angle at which the examiner read the torque value. Under each condition, a single examiner applied the recommended torque to each manufacturer's screws five times in a clockwise direction. The average measured torque, standard deviation, bias, and coefficient of variation were calculated and compared accordingly. Results Wrenches from six manufacturers demonstrated excellent accuracy for measurements at the center of the beam (bias within ± 4%). For measurements at 90°, equipments from five manufacturers displayed excellent accuracy (bias within ± 7%), and seven showed excellent repeatability (coefficient of variation ≤ 2%). Conclusion The scale should be aligned with the center of the beam and read from 90° while using a torque wrench. The accuracy and repeatability torques generated by the wrenches differed according to the manufacturer, scale width, scale line width, beam width, and distance between the scale and beam center. Based on these results, we suggest that a torque wrench must be selected after determining the difference in the structure of the torque wrench.


Author(s):  
Bohumil Skala ◽  
Vladimir Kindl ◽  
Miroslav Byrtus ◽  
Eduard Pudil ◽  
Vaclav Longin ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3165 ◽  
Author(s):  
Rusong Miao ◽  
Ruili Shen ◽  
Songhan Zhang ◽  
Songling Xue

Pre-stressed bolted joints are widely used in civil structures and industries. The tightening force of a bolt is crucial to the reliability of the joint connection. Loosening or over-tightening of a bolt may lead to connectors slipping or bolt strength failure, which are both harmful to the main structure. In most practical cases it is extremely difficult, even impossible, to install the bolts to ensure there is a precise tension force during the construction phase. Furthermore, it is inevitable that the bolts will loosen due to long-term usage under high stress. The identification of bolt tension is therefore of great significance for monitoring the health of existing structures. This paper reviews state-of-the-art research on bolt tightening force measurement and loosening detection, including fundamental theories, algorithms, experimental set-ups, and practical applications. In general, methods based on the acoustoelastic principle are capable of calculating the value of bolt axial stress if both the time of incident wave and reflected wave can be clearly recognized. The relevant commercial instrument has been developed and its algorithm will be briefly introduced. Methods based on contact dynamic phenomena such as wave energy attenuation, high-order harmonics, sidebands, and impedance, are able to correlate interface stiffness and the clamping force of bolted joints with respective dynamic indicators. Therefore, they are able to detect or quantify bolt tightness. The related technologies will be reviewed in detail. Potential challenges and research trends will also be discussed.


2013 ◽  
Vol 389 ◽  
pp. 364-370
Author(s):  
Bei Li ◽  
Jian Bin Zhang ◽  
Lu Sha Jiang

In order to analysis modal characteristic of bearing with pre-tightening force on main spindle of numerical control lathe, this paper proposes a model of spindle modality analysis. This model is used to simulate the preloaded bearing shaft system modal, and the simulation results are verified by modal experiment. This paper takes 7005c as the research object to establish the equivalent-spring model based on the Hertz theory considering the pre-tightening force, whose focus is dealing with the contact between bearings rolling element and raceway. Then the model will be used to get the bearing stiffness for finite element simulation analysis. The shafting modal with preloaded bearing test platform is structured to get the shaft system modal parameters, which is compared with and verified the simulation analysis.


2012 ◽  
Vol 538-541 ◽  
pp. 2718-2721
Author(s):  
Ying Liu ◽  
Jian Chu Shen

The design of a new pre-tensional structure(FROMO® preload nut) applied in the large size of screw thread was introduced, the preload bolt is only beared with the pure tensile stress. The pre-tightening force for the preload bolt and pre-tightening torque for the jack bolts were calculated. The practice elongation value of the preload bolt was measured, and compared with its theoretical elongation value. The result shows that: the new pre-tensional structure has adequate strength, it can control the pre-tightening force accurately with manual acting spanner, it increases efficiency and ensures the safety of operating , and which has promised the good performance in the application of the projects.


1973 ◽  
Vol 39 (462) ◽  
pp. 748-752
Author(s):  
Kaoru HONGO ◽  
Isamu YOSHIMOTO ◽  
Gendai ETO ◽  
Tsutomu SASAKI

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 620
Author(s):  
Yousef Jiries ◽  
Tamar Brosh ◽  
Shlomo Matalon ◽  
Vladimir Perlis ◽  
Zeev Ormianer

Aim: We assess the accuracy of torque controllers after several aging processes and the bacterial leakage on Implant-Abutment complexes (IAC).Methods: A total of 12 spring-type and 12 friction-type torque controllers and 48 IAC (24 conical and 24 hexagonal connections) were evaluated. Chemical, mechanical, temperature, and pressure-aging methods were applied individually to replicate clinical use. Torque controller accuracy was analyzed before and after aging using a calibrated gauge. To assess bacterial leakage, the IAC were suspended in a bacterial medium for 24 h. Direct Contact Test (DCT) and Polymerase Chain Reaction Test (RT-PCR) analyzed the infiltration of F. nucleatum and P. gingivalis into the IAC micro-gap. Results: A significant decrease in torque after 10 days of aging was found. The spring-type torque controller was affected the most, regardless of the aging method (P < 0.05). PCR results indicated that all groups exhibited significantly more bacterial leakage, regardless of the method used (P < 0.05). The conical IAC demonstrated more bacterial leakage of P. gingivalis compared with the hexagonal IAC (P = 0.07). DCT found bacterial growth in the IAC only before aging and was not identified after aging. Conclusion: Aging affects torque accuracy. A reduction in force was noticed after 10 days. The conical IAC exhibits more bacterial leakage, although this was not statistically significant.


Sign in / Sign up

Export Citation Format

Share Document