A Research of Shaft Modal Simulation Method Based on the Preloaded Angular Contact Ball Bearing

2013 ◽  
Vol 389 ◽  
pp. 364-370
Author(s):  
Bei Li ◽  
Jian Bin Zhang ◽  
Lu Sha Jiang

In order to analysis modal characteristic of bearing with pre-tightening force on main spindle of numerical control lathe, this paper proposes a model of spindle modality analysis. This model is used to simulate the preloaded bearing shaft system modal, and the simulation results are verified by modal experiment. This paper takes 7005c as the research object to establish the equivalent-spring model based on the Hertz theory considering the pre-tightening force, whose focus is dealing with the contact between bearings rolling element and raceway. Then the model will be used to get the bearing stiffness for finite element simulation analysis. The shafting modal with preloaded bearing test platform is structured to get the shaft system modal parameters, which is compared with and verified the simulation analysis.

Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 226
Author(s):  
Hui Zhao ◽  
Haisen Li ◽  
Yan Wang ◽  
Zhenjun Liu ◽  
Jiacong Bian ◽  
...  

Thickness vibration mode is commonly used for high-frequency transducers. For disc piezoelectric ceramics, there is no ideally pure thickness vibration mode because the coupling between the radial and thickness modes always exists. Furthermore, it also deteriorates the transmission voltage response and directivity of the high-frequency transducer. In this paper, based on the theoretical calculation and finite element simulation method, a new method was proposed, and the related experiment was carried out to convince this idea. Both the simulation analysis and experimental results show that drilling a hole at the center of piezoelectric vibration is a simple but effective method to obtain a pure thickness vibration mode of the disc piezoelectric ceramic, and then improve the transmitting ability and directivity of the high-frequency piezoelectric transducer. The sidelobe level is as low as −21.3 dB.


2013 ◽  
Vol 455 ◽  
pp. 511-516
Author(s):  
Hong Bo Li ◽  
Yuan Wei Yuan ◽  
Jie Zhang ◽  
Xiao Jun Chai ◽  
Bing Sheng Wang ◽  
...  

Matrix cone angle is an important parameter in the ironing stretch process of two-piece can body. On the base of analyzing the ironing stretch technology, finite element simulation method with ABAQUS software was applied to simulate ironing stretch process of can body, the influence of matrix cone angle on ironing stretch technology was analyzed quantitatively, and then the reasonable range of matrix cone angle was recommended. The result indicated that the best range of matrix cone angle is 6°~9°, which can provide reference for the mould optimization and technology formulation.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Tang ◽  
Guobin Xu ◽  
Jijian Lian ◽  
Yue Yan ◽  
Dengfeng Fu ◽  
...  

A simulation method for microbial cemented sand (MCS) based on the Two-Dimensional Particle Flow Code (PFC 2D) has been developed in this study. It consists of an identification of mesoscopic contact model for structural mesoscopic particles, development of morphological algorithm for irregular crystal particles, and classification and setting of mesoscopic parameters for compositional materials and particle size distribution simulation. Additionally, an acoustic emission algorithm based on moment tensor theory was developed for discrete element simulation analysis on fracture characteristic of cemented sand under the action of the force. The simulation method proposed in this article/paper may reflect the physical and mechanical characteristics of real microbial cemented sand based on physical experiments. Quantification of the fracture process of microbial cemented sand is possible by introducing a moment magnitude (MW) in discrete element simulation analysis. The material may have greater probability of fracture between the MW ranges of −6.8 and −6.6. The relationship between probability of fracture at different MWs and the MW follows the Gaussian curve. The research results are a new trial for fracture analysis on microbial cemented sand.


Author(s):  
Xiaoming HAN ◽  
Chenxu LUO ◽  
Xingyu HAN

<span lang="EN-US">In order to solve the bit front rake angle parameter selection problem of under different coal rock, it is proposed in polycrystalline diamond compact no core bit as the research object, and established a bit compact two-dimensional stress model of cutting teeth. The result shows that the front rake angle is the factor of cutting force and the drilling efficiency. Application of SolidWorks simulation carries out the finite element simulation analysis respectively to different front rake angle of bit model under the condition of soft rock and hard rock. Form the simulation it concludes that under the condition of soft rock and hard rock, the optimal front rake angle is 10° and 15° respectively. It is obtained that the strength of the bit is largest and the life is longest on the best front rake angle of bit.</span>


2011 ◽  
Vol 211-212 ◽  
pp. 823-826
Author(s):  
Jia Yao ◽  
Wan Jiang Wu ◽  
Ya Qin Li ◽  
Ming Hui Han ◽  
Li Wei Jiang

Application of stress wave testing methods can realize non-destructive testing of composites, but non-homogeneous characteristics of composites determine the complexity of stress wave propagation. Using the stress wave theory to explain the propagation principle, to describe the stress situation in the composites, which is meaningful to perfect the stress wave testing method. In this paper, stress wave propagation principle of non-homogeneous laminated composites has been revealed, mathematical descriptions of stress wave propagation are also given, and finite element simulation method has been used to verify the theory.


Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


2005 ◽  
Vol 2005 (1) ◽  
pp. 53-59 ◽  
Author(s):  
David P. Fleming ◽  
J. V. Poplawski

Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus, an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. For this work, bearing forces were calculated by COBRA-AHS, a recently developed rolling-element bearing analysis code. Bearing stiffness was found to be a strong function of bearing deflection, with higher deflection producing markedly higher stiffness. Curves fitted to the bearing data for a range of speeds and loads were supplied to a flexible rotor unbalance response analysis. The rotordynamic analysis showed that vibration response varied nonlinearly with the amount of rotor imbalance. Moreover, the increase in stiffness as critical speeds were approached caused a large increase in rotor and bearing vibration amplitude over part of the speed range compared to the case of constant-stiffness bearings. Regions of bistable operation were possible, in which the amplitude at a given speed was much larger during rotor acceleration than during deceleration. A moderate amount of damping will eliminate the bistable region, but this damping is not inherent in ball bearings.


2013 ◽  
Vol 680 ◽  
pp. 410-416 ◽  
Author(s):  
Jun Ming Wang ◽  
Fu Yuan Tong ◽  
Xiao Xue Li

By simplifying the geometric shape of abrasive grain in a cone-shape, the authors conduct the 3D dynamic finite element simulation on profile grinding with axial feed by single abrasive grain using deform-3D software. Analysis is made on the influence upon the grinding forces in case of the same grinding speed, the same grinding depth and the same friction factor between wheel and workpiece at different axial feed. The results show that the normal force and the tangential force increase with the increase of axial feed, but the axial force decreases with the axial feed.


Sign in / Sign up

Export Citation Format

Share Document