Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size

2016 ◽  
Vol 154 ◽  
pp. 225-244 ◽  
Author(s):  
M.G. Alberti ◽  
A. Enfedaque ◽  
J.C. Gálvez
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3795
Author(s):  
Fernando Suárez ◽  
Jaime C. Gálvez ◽  
Marcos G. Alberti ◽  
Alejandro Enfedaque

The size effect on plain concrete specimens is well known and can be correctly captured when performing numerical simulations by using a well characterised softening function. Nevertheless, in the case of polyolefin-fibre-reinforced concrete (PFRC), this is not directly applicable, since using only diagram cannot capture the material behaviour on elements with different sizes due to dependence of the orientation factor of the fibres with the size of the specimen. In previous works, the use of a trilinear softening diagram proved to be very convenient for reproducing fracture of polyolefin-fibre-reinforced concrete elements, but only if it is previously adapted for each specimen size. In this work, a predictive methodology is used to reproduce fracture of polyolefin-fibre-reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by means of a well-known embedded cohesive model, with a trilinear softening function that is defined specifically for each specimen size. The fundamental points of these softening functions are defined a priori by using empirical expressions proposed in past works, based on an extensive experimental background. Therefore, the numerical results are obtained in a predictive manner and then compared with a previous experimental campaign in which PFRC notched specimens of different sizes were tested with a three-point bending test setup, showing that this approach properly captures the size effect, although some values of the fundamental points in the trilinear diagram could be defined more accurately.


Author(s):  
Fernando Suárez ◽  
Jaime C Gálvez ◽  
Marcos G Alberti ◽  
Alejandro Enfedaque

Size effect on plain concrete specimens is well known and can be correctly captured when performing numerical simulations by using a well characterised softening function, but in the case of fibre reinforced concrete this is not directly applicable, since an only diagram cannot capture the material behaviour on elements with different size due to dependence of the orientation factor of the fibres with the size of the specimen. In previous works, the use of a trilinear softening diagram proved to be very convenient for reproducing fracture of polyolefin fibre reinforced concrete elements, but only if it is previously adapted for each specimen size. In this work, a predictive methodology is used to reproduce fracture of polyolefin fibre reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by means of a well known embedded cohesive model, with a trilinear softening function that is defined specifically for each specimen size. The fundamental points of these softening functions are defined a priori by using empirical expressions proposed in past works, based on an extensive experimental background. Therefore, the numerical results are obtained in a predictive manner, and then compared with a previous experimental campaign, showing that this approach properly captures the size effect, although some values of the fundamental points in the trilinear diagram could be defined more accurately.


2018 ◽  
Vol 219 ◽  
pp. 03004 ◽  
Author(s):  
Aleksandra Mariak ◽  
Marzena Kurpińska

The paper presents studies of a ready-mix concrete containing polymer fibres of three different lengths: 24, 38 and 54 mm. The performed tests allowed to determine the effect of fibre volume fraction and length on the concrete strength. The basic parameters of concrete mixture (consistency, air content and bulk density) were identified. Fibre reinforced concrete belongs to a group of composite materials. The polymer fibres are applied in the concrete in structures where the reduction of shrinkage cracking as well as corrosion resistance and fire temperatures are required. It is widely known, that the cracking behaviour of concrete structures depends on flexural tensile strength of concrete. The addition of fibres significantly improves the tensile strength. The experimental study, including axial compressive strength and center-point loading flexural tensile strength, was carried out. The scope of the research was also expanded by the usage of a scanning microscope. The test results showed the effect of fibre length and fibre combinations on mechanical properties of concrete. The effect of the research is to formulate guidelines due to the quantity of macro polymer fibres. In general, appropriate fibre content brings a beneficial effect e.g. improves better workability of a concrete mixture.


2019 ◽  
Vol 26 (4) ◽  
pp. 197-208
Author(s):  
Leo Gu Li ◽  
Albert Kwok Hung Kwan

Previous research studies have indicated that using fibres to improve crack resistance and applying expansive agent (EA) to compensate shrinkage are both effective methods to mitigate shrinkage cracking of concrete, and the additions of both fibres and EA can enhance the other performance attributes of concrete. In this study, an EA was added to fibre reinforced concrete (FRC) to produce concrete mixes with various water/binder (W/B) ratios, steel fibre (SF) contents and EA contents for testing of their workability and compressive properties. The test results showed that adding EA would slightly increase the superplasticiser (SP) demand and decrease the compressive strength, Young’s modulus and Poisson’s ratio, but significantly improve the toughness and specific toughness of the steel FRC produced. Such improvement in toughness may be attributed to the pre-stress of the concrete matrix and the confinement effect of the SFs due to the expansion of the concrete and the restraint of the SFs against such expansion.


Sign in / Sign up

Export Citation Format

Share Document