Use of X-ray computed tomography for studying the desiccation cracking and self-healing of fine soil during drying–wetting paths

2021 ◽  
pp. 106255
Author(s):  
Mohammed Zaidi ◽  
Nasre-Dine Ahfir ◽  
Abdellah Alem ◽  
Said Taibi ◽  
Bouabid El Mansouri ◽  
...  
2014 ◽  
Vol 53 ◽  
pp. 289-304 ◽  
Author(s):  
Jianyun Wang ◽  
Jan Dewanckele ◽  
Veerle Cnudde ◽  
Sandra Van Vlierberghe ◽  
Willy Verstraete ◽  
...  

2019 ◽  
Vol 255 ◽  
pp. 1-10 ◽  
Author(s):  
Chao-Sheng Tang ◽  
Cheng Zhu ◽  
Ting Leng ◽  
Bin Shi ◽  
Qing Cheng ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7780
Author(s):  
Min Xu ◽  
Lingjun Guo ◽  
Hanhui Wang

A SiC ceramic coating was prepared on carbon/carbon composites by pack cementation. The phase composition and microstructure of the coated specimens were characterized using X-ray diffraction instrument and scanning electron microscope. The results showed that the mass-loss percentage of the coated specimen was 9.5% after being oxidized for 20 h. The oxidation failure of the SiC ceramic coating at 1773 K was analysed by non-destructive X-ray computed tomography. The effective self-healing of cracks with widths below 12.7 μm introduced during the coating preparation process and generated while the specimens cooled down from the high oxidation temperature prevented the oxidation of carbon/carbon composites. X-ray computed tomography was used to obtain three-dimensional images revealing internal damage caused by spallation and open holes on the coating. Stress induced by heating and cooling caused the formation, growth and coalescence of cracks, which in turn led to exfoliation of the coating and subsequent failure of oxidation protection.


1999 ◽  
Vol 11 (1) ◽  
pp. 199-211
Author(s):  
J. M. Winter ◽  
R. E. Green ◽  
A. M. Waters ◽  
W. H. Green

2013 ◽  
Vol 19 (S2) ◽  
pp. 630-631
Author(s):  
P. Mandal ◽  
W.K. Epting ◽  
S. Litster

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 591
Author(s):  
Manasavee Lohvithee ◽  
Wenjuan Sun ◽  
Stephane Chretien ◽  
Manuchehr Soleimani

In this paper, a computer-aided training method for hyperparameter selection of limited data X-ray computed tomography (XCT) reconstruction was proposed. The proposed method employed the ant colony optimisation (ACO) approach to assist in hyperparameter selection for the adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm, which is a total-variation (TV) based regularisation algorithm. During the implementation, there was a colony of artificial ants that swarm through the AwPCSD algorithm. Each ant chose a set of hyperparameters required for its iterative CT reconstruction and the correlation coefficient (CC) score was given for reconstructed images compared to the reference image. A colony of ants in one generation left a pheromone through its chosen path representing a choice of hyperparameters. Higher score means stronger pheromones/probabilities to attract more ants in the next generations. At the end of the implementation, the hyperparameter configuration with the highest score was chosen as an optimal set of hyperparameters. In the experimental results section, the reconstruction using hyperparameters from the proposed method was compared with results from three other cases: the conjugate gradient least square (CGLS), the AwPCSD algorithm using the set of arbitrary hyperparameters and the cross-validation method.The experiments showed that the results from the proposed method were superior to those of the CGLS algorithm and the AwPCSD algorithm using the set of arbitrary hyperparameters. Although the results of the ACO algorithm were slightly inferior to those of the cross-validation method as measured by the quantitative metrics, the ACO algorithm was over 10 times faster than cross—Validation. The optimal set of hyperparameters from the proposed method was also robust against an increase of noise in the data and can be applicable to different imaging samples with similar context. The ACO approach in the proposed method was able to identify optimal values of hyperparameters for a dataset and, as a result, produced a good quality reconstructed image from limited number of projection data. The proposed method in this work successfully solves a problem of hyperparameters selection, which is a major challenge in an implementation of TV based reconstruction algorithms.


Sign in / Sign up

Export Citation Format

Share Document