Impact tests on steel–concrete–steel sandwich beams with lightweight concrete core

2009 ◽  
Vol 31 (9) ◽  
pp. 2045-2059 ◽  
Author(s):  
J.Y. Richard Liew ◽  
K.M.A. Sohel ◽  
C.G. Koh
2019 ◽  
Vol 3 (1) ◽  
pp. 5 ◽  
Author(s):  
Osama Youssf ◽  
Reza Hassanli ◽  
Julie E. Mills ◽  
Xing Ma ◽  
Yan Zhuge

Due to the structural and economic features of steel–concrete–steel (SCS) structural systems compared with conventional reinforced concrete ones, they are now used for a range of structural applications. Rubcrete, in which crumbed rubber from scrap tires partially replaces mineral aggregates in concrete, can be used instead of conventional concrete. Utilizing rubber waste in concrete potentially results in a more ductile lightweight concrete that can introduce additional features to the SCS structural members. This study aimed to explore different concrete core materials in SCS beams and the appropriate shear connectors required. In this study, four SCS sandwich beams were tested experimentally under incrementally increasing flexure cyclic loading. Each beam had a length of 1000 mm, and upper and lower steel plates with 3 mm thickness sandwiched the concrete core, which had a cross-section of 150 mm × 150 mm. Two of the beams were constructed out of Rubcrete core with welded and bolted shear connectors, while the other two beams were constructed with welded shear connectors and either conventional concrete or lightweight expanded clay aggregate (LECA) concrete cores. The performance of the SCS sandwich beams including damage pattern, failure mode, load-displacement response, and energy dissipation behavior was compared. The results showed that, while Rubcrete was able to provide similar concrete cracking behavior and strength to that of conventional concrete, LECA concrete degraded the strength properties of SCS. Using bolted shear connectors instead of welded ones caused a high number of cracks that resulted in a reduced ductility and deflection capacity of the beam before failure. The rubberized concrete specimen presented an improved ductility and deflection capacity compared with its conventional concrete counterpart.


2020 ◽  
Vol 10 (23) ◽  
pp. 8647
Author(s):  
Mansour Ghalehnovi ◽  
Mehdi Yousefi ◽  
Arash Karimipour ◽  
Jorge de Brito ◽  
Mahdi Norooziyan

The most researches on steel-concrete-steel (SCS) sandwich slabs are to control the cracking of concrete core along with losing weight, and shear connector type. In this study, the behaviour of SCS slabs with bi-directional corrugated-strip shear connectors (CSC) was investigated. One of the most important practical problems of CSCs in SCS slabs is lack of access for another end welding to the second steel faceplate. In this research, plug weld was proposed to provide partial welding of the other end of CSCs to a steel plate. For this reason, three slabs were manufactured using the normal concrete core as a control sample and lightweight concrete (LWC) core with and without steel fibres. The behaviour of these slabs was compared with the behaviour of SCS slabs with J-hook and stud bolt connectors from previous researches. The specimens were tested under a concentrated block load as quasi-statically. Based on the load-displacement relationship at the centre, failure modes, loading capacity, energy absorption, and ductility showed acceptable behaviour for CSC system slabs. There was also a good agreement between the ultimate flexural strength based on experiments and previous research relationships.


2018 ◽  
Vol 941 ◽  
pp. 2417-2422 ◽  
Author(s):  
Jaksada Thumrongvut ◽  
Pavarate Tiwjantuk

This paper presents the experimental results on the strength and axial behavior of rectangular steel tube columns filled with cellular lightweight concrete (CLC) under axial compression. A total of 24 specimens, including 6 reinforced cellular lightweight concrete (RCLC) columns and 18 cellular lightweight concrete-filled steel tube (CLCFT) columns are investigated. The nominal dimension of the rectangular columns are 150×75 mm in cross-section and 750 mm in height. The parameter used in all tests are the ultimate compressive strengths of the CLC, which are 15 MPa, 20 MPa and 25 MPa, and the wall thicknesses of steel tubes, which are 3.0 mm, 4.5 mm and 6.0 mm. All specimens are prepared and loaded concentrically in axial compression to failure. The results of these tests demonstrated that the CLCFT columns have a linear behavior up to the approximately 80-90% of their maximum compressive load. Then, the behavior of the columns is nonlinear. The nonlinear behaviors are due to the crushing of the concrete core and local wall buckling of the steel hollow tube. In addition, it is found that the CLCFT columns have high axial deformability at the failure when compared to the reference RCLC columns. Finally, by comparing the maximum compressive load of the test results with those obtained from the ACI composite design equation, the comparison results show that calculation formula in ACI code can be applied to compute the axial capacity of CLCFT columns under axial compression.


PCI Journal ◽  
2005 ◽  
Vol 50 (5) ◽  
pp. 84-94 ◽  
Author(s):  
Lawrence F. Kahn ◽  
Mauricio Lopez

Sign in / Sign up

Export Citation Format

Share Document