Comparison of the seismic performance of a partial mass isolation technique with conventional TMD and base-isolation systems under broad-band and narrow-band excitations

2018 ◽  
Vol 158 ◽  
pp. 110-123 ◽  
Author(s):  
Hamidreza Anajafi ◽  
Ricardo A. Medina
2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 199-206
Author(s):  
Bertha Olmos ◽  
José Jara ◽  
José Luis Fabián

This paper investigates the effects of the nonlinear behaviour of isolation pads on the seismic capacity of bridges to identify the parameters of base isolation systems that can be used to improve seismic performance of bridges. A parametric study was conducted by designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (acceleration, displacement and pier seismic forces) were evaluated for two structural models. The first model corresponded to the bridges supported on elastomeric bearings with linear elastic behaviour and the second model simulated a base isolated bridge that accounts for the nonlinear behaviour of the system. The seismic demand was represented with a group of twelve real accelerograms recorded on the subduction zone on the Pacific Coast of Mexico. The nonlinear responses under different damage scenarios for the bridges included in the presented study were estimated. These results allow determining the seismic capacity of the bridges with and without base isolation. Results show clearly the importance of considering the nonlinear behaviour on the seismic performance of bridges and the influence of base isolation on the seismic vulnerability of medium size bridges.


2020 ◽  
Vol 10 (22) ◽  
pp. 8235
Author(s):  
Peisong Wu ◽  
Jinping Ou

Isolation technology has been successfully applied in seismic migration. With increasing of seismic demand, seismic performance of isolation structures subjected to very-rare earthquakes need further improvement. However, the isolation layer generally lacks sufficient deformation ability under very-rare earthquakes due to the deformation limit of classical isolation bearing. In order to circumvent the difficulty, this paper develops two new isolation bearings, namely super-large displacement rotation friction pendulum bearing (SLDRFPB) and super-large displacement translation friction pendulum bearing (SLDTFPB). By setting spherical shells with large span and large radius, large horizontal displacement and small horizontal stiffness can be achieved. Safety of the isolation layer and the isolation effect of the superstructure can be greatly improved. SLDTFPB differs from SLDRFPB in the motion state of the superstructure and space utilization of the isolation layer, thus SLDRFPB and SLDTFPB are suitable for structures with different requirements. Due to rotation of the superstructure with SLDRFPB or sliding frames in SLDTFPB, the traditional design method of friction pendulum bearing is no longer suitable. We present a new procedure to accurately and conveniently evaluate seismic performance of two developed bearings. Numerical simulation shows that the seismic response of both the superstructure and isolation layer is small. Developed SLDRFPB and SLDTFPB have sufficient emergency capacity and isolation resilience when subjected to very-rare earthquakes.


2016 ◽  
Vol 846 ◽  
pp. 114-119
Author(s):  
Arati Pokhrel ◽  
Jian Chun Li ◽  
Yan Cheng Li ◽  
Nicos Maksis ◽  
Yang Yu

Due to the fact that safety is the major concern for civil structures in a seismic active zone, it has always been a challenge for structural engineers to protect structures from earthquake. During past several decades base isolation technique has become more and more popular in the field of seismic protection which can be adopted for new structures as well as the retrofit of existing structures. The objective of this study is to evaluate the behaviours of the building with different seismic isolation systems in terms of roof acceleration, elastic base shear and inter-storey drift under four benchmark earthquakes, namely, El Centro, Northridge, Hachinohe and Kobe earthquakes. Firstly, the design of base isolation systems, i.e. lead rubber bearing (LRB) and friction pendulum bearing (FPB) for five storey RC building was introduced in detail. The non-linear time history analysis was performed in order to determine the structural responses whereas Bouc-Wen Model of hysteresis was adopted for modelling the bilinear behaviour of the bearings. Both isolation systems increase the fundamental period of structures and reduces the spectral acceleration, and hence reduces the lateral force cause by earthquake in the structures, resulting in significant improvement in building performance; however the Lead Rubber Bearing provided the best reduction in elastic base shear and inter-storey drift (at first floor) for most of the benchmark earthquakes. For the adopted bearing characteristics, FPB provided the low isolator displacement.


2020 ◽  
Vol 10 (24) ◽  
pp. 9150
Author(s):  
Hyung-Joon Kim ◽  
Dong-Hyeon Shin

The promising seismic response emerged by the concept of base isolation leads to increasing practical applications into buildings located at low-to-moderate seismicity regions. However, it is questionable that their collapse capacities can be ensured with reasonable reliability, although they would be designed according to a current seismic design code. This paper aims to investigate the collapse capacities of isolated buildings governed by the prescribed design criteria on the displacement and strength capacities of the employed isolation systems. In order to evaluate their collapse capacity under maximum considered earthquakes (MCEs), simplified numerical models are constructed for a larger number of nonlinear incremental dynamic analyses. The influential factors on the collapse probabilities of the prototype buildings are found out to specifically suggest the potential modifications of the design requirements. Although the MCE collapse probabilities of all isolated buildings are smaller than those expected for typical non-isolated buildings, these values are significantly different according to the degree of seismicity. The MCE collapse probabilities are dependent upon the governing collapse mechanism and the total system uncertainty. For the prototype buildings located at low-to-moderate seismicity regions, this study proposed the acceptable uncertainty to achieve a similar collapse performance to the corresponding buildings built at high seismicity regions.


Sign in / Sign up

Export Citation Format

Share Document