Experimental dynamic analysis of composite sandwich beams with magnetorheological honeycomb core

2018 ◽  
Vol 176 ◽  
pp. 231-242 ◽  
Author(s):  
Felipe de Souza Eloy ◽  
Guilherme Ferreira Gomes ◽  
Antonio Carlos Ancelotti ◽  
Sebastião Simões da Cunha ◽  
Antonio José Faria Bombard ◽  
...  
2019 ◽  
Vol 209 ◽  
pp. 242-257 ◽  
Author(s):  
Felipe de Souza Eloy ◽  
Guilherme Ferreira Gomes ◽  
Antonio Carlos Ancelotti ◽  
Sebastião Simões da Cunha ◽  
Antonio José Faria Bombard ◽  
...  

2006 ◽  
Vol 3-4 ◽  
pp. 173-178
Author(s):  
E.E. Gdoutos ◽  
M.S. Konsta-Gdoutos

Facing compressive failure, facing wrinkling and core shear failure are the most commonly encountered failure modes in sandwich beams with facings made of composite materials. The occurrence and sequence of these failure modes depends on the geometrical dimensions, the form of loading and type of support of the beam. In this paper the above three failure modes in sandwich beams with facings made of carbon/epoxy composites and cores made of aluminum honeycomb and two types of foam have been investigated. Two types of beams, the simply supported and the cantilever have been considered. Loading included concentrated and uniform. It was found that in beams with foam core facing wrinkling and core shear failure occur, whereas in beams with honeycomb core facing compressive failure and core shear crimping take place. Results were obtained for the dependence of failure mode on the geometry of the beam and the type of loading. The critical beam spans for failure mode transition from core shear to wrinkling failure were established. It was found that initiation of a particular failure mode depends on the properties of the facing and core materials, the geometrical configuration and loading of composite sandwich beams.


2012 ◽  
Vol 48 ◽  
pp. 65-81 ◽  
Author(s):  
B.P. Russell ◽  
T. Liu ◽  
N.A. Fleck ◽  
V.S. Deshpande

2021 ◽  
Vol 1136 (1) ◽  
pp. 012050
Author(s):  
Deepak Kumar ◽  
Vinayak Kallannavar ◽  
Subhaschandra Kattimani ◽  
B. Rajendra Prasad Reddy

2014 ◽  
Vol 108 ◽  
pp. 234-242 ◽  
Author(s):  
Jian Xiong ◽  
Li Ma ◽  
Ariel Stocchi ◽  
Jinshui Yang ◽  
Linzhi Wu ◽  
...  

2015 ◽  
Vol 67 (1) ◽  
pp. 7-12
Author(s):  
Cosmin Mihai Miriţoiu

Abstract In this paper there is presented an experimental procedure used to determine the flexural rigidity for composite sandwich bars with polypropylene honeycomb core with various thickness values: 1, 1,5 and 2 cm. The composite bars will be reinforced with one layer of carbon fiber. The width value of the composite bars will be of 6 cm. In order to obtain the flexural rigidity the composite bars will be clamped at one end and left free at the other. An accelerometer will be placed at the free end used to record the free vibrations of these bars. The simplifying assumption of “bar” will be used in this research, so I have chosen several free lengths for the bars: 29, 32 and 35 cm. The eigenfrequency of the first eigenmode will be used to determine the flexural rigidity of the bars.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Łukasz Święch ◽  
Radosław Kołodziejczyk ◽  
Natalia Stącel

The work concerns the experimental analysis of the process of destruction of sandwich structures as a result of circumferential shearing. The aim of the research was to determine the differences that occur in the destruction mechanism of such structures depending on the thickness and material of the core used. Specimens with a Rohacell foam core and a honeycomb core were made for the purposes of the research. The specimen destruction process was carried out in a static loading test with the use of a system introducing circumferential shear stress. The analysis of the tests results was made based on the load-displacement curves, the maximum load, and the energy absorbed by individual specimens. The tests indicated significant differences in the destruction mechanism of specimens with varied core material. The specimen with the honeycomb core was characterized by greater stiffness, which caused the damage to occur locally in the area subjected to the pressure of the punch. In specimens with the foam core, due to the lower stiffness of that core, the skins of the structure were bent, which additionally transfers compressive and tensile loads. This led to a higher maximum force that the specimens obtained at the time of destruction and greater energy absorption.


Sign in / Sign up

Export Citation Format

Share Document