Retrofit of a settling basin of a small hydropower plant

2021 ◽  
Vol 236 ◽  
pp. 112118
Author(s):  
Miloš V. Nikolić ◽  
Rade M. Karamarković ◽  
Miodrag V. Karamarković ◽  
Vladan M. Karamarković
2012 ◽  
Vol 11 ◽  
pp. 43-48
Author(s):  
H. S. Shrestha

The value of the peaking hour energy is very high in Nepal where people are facing more than 16 hours load shedding in a day during the dry period. Currently, the peak load demand is about 90% higher than the off peak load demand. Therefore, a storage type hydropower project plays a signifi cant role in the Nepalese energy sector and decides the fate of load shedding. However, the Reservoir sedimentation studies in Nepal show that the capacity of the reservoirs has been reduced significantly; hence, preservation of these reservoirs is a vital issue.The hydrosuction sediment removal system (HSRS) is one of the methods to remove sediment from the reservoirs. A modified double layer suction head of HSRS was used in a field test of HSRS at the Settling Basin of Sunkoshi Small Hydropower Plant (SSHP) and Peaking Pond of the Sunkoshi Hydropower Plant (SHP). This paper presents field test results in the settling basin of SSHP and peaking pond of SHP and applicability of HSRS in the Kulekhani Reservoir and other peaking ponds in Nepal.DOI: http://dx.doi.org/10.3126/hn.v11i0.7162 Hydro Nepal Vol.11 2011 pp.43-48


Author(s):  
Miloš V. Nikolić ◽  
Rade M. Karamarković

Abstract Unequal flow distribution between the chambers of a three-chamber settling basin causes its malfunction and endangers the turbines of a small hydropower plant. To equalize the flows, sluice gates are used. To find their positions, the following methodologies are considered: (1) measurements combined with trial-and-error method (TAE), (2) measurements with regression analysis (RA), (3) CFD model combined with TAE, (4) CFD model with RA, (5) CFD model supported by a one-dimensional flow model, and (6) CFD model with an analytical model. The additional models and RA are intended to speed up the solution finding. From the previous list, only the sixth methodology is applicable. The first four are not because of the weir design, and the fifth because of the three-dimensional flow character. Initially, the CFD model of the side-weir intake was developed and validated. Afterward, the analytical model, which consists of a system of three pressure drop equations for three parallel and partly imaginary streams, is formed. The local flow resistances in the analytical model are determined by the CFD model combined with RA. To equalize the flows, three solutions with (i) fix, (ii) fix in a range of flows, and (iii) variable positions of the sluice gates are analyzed.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Md Rakibuzzaman ◽  
Sang-Ho Suh ◽  
Hyoung-Ho Kim ◽  
Youngtae Ryu ◽  
Kyung Yup Kim

Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decreased the flow rate, reducing the water power and increasing the efficiency by about 5.57%. Also, results revealed that tubular or cross-flow turbines could be suitable for use in fish farm power plants, and the generator used should be waterproofed to avoid exposure to seawater.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1041
Author(s):  
Francisco Javier Sanz-Ronda ◽  
Juan Francisco Fuentes-Pérez ◽  
Ana García-Vega ◽  
Francisco Javier Bravo-Córdoba

Fish need to move upstream and downstream through rivers to complete their life cycles. Despite the fact that fishways are the most commonly applied solution to recover longitudinal connectivity, they are not considered viable for downstream migration. Therefore, alternative facilities are recommended to facilitate downstream migration. However, a few recent studies have disagreed with this general assumption, showing the potential for bidirectional movements. This study advances our understanding of the potential of fishways for downstream migration by studying their efficiency in a run-of-the-river hydropower plant in the Duero River (Spain). To achieve this, downstream movements of the Iberian barbel (n = 299) were monitored in a stepped fishway for two years with passive integrated transponder (PIT)-tag technology, considering the effect of fish origin and release zone. The results showed that 24.9% of barbels descended through the fishway, with the origin and release zone affecting the fishway location. In addition, downstream movements were observed throughout the whole year, except in winter. The study concludes that, under specific scenarios, fishways could act as safe alternative routes for downstream migration.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alberto Scotti ◽  
Roberta Bottarin

AbstractThe present dataset contains information about aquatic macroinvertebrates and environmental variables collected before and after the implementation of a small “run-of-river” hydropower plant on the Saldur stream, a glacier-fed stream located in the Italian Central-Eastern Alps. Between 2015 and 2019, with two sampling events per year, we collected and identified 34,836 organisms in 6 sampling sites located within a 6 km stretch of the stream. Given the current boom of the hydropower sector worldwide, and the growing contribution of small hydropower plants to energy production, data here included may represent an important – and long advocated – baseline to assess the effects that these kinds of powerplants have on the riverine ecosystem. Moreover, since the Saldur stream is part of the International Long Term Ecological Research network, this dataset also constitutes part of the data gathered within this research programme. All samples are preserved at Eurac Research facilities.


2021 ◽  
Vol 82 (3) ◽  
pp. 204-206
Author(s):  
Aleksey Benderev ◽  
Nikolay Stoyanov ◽  
Stefan Dimovski ◽  
Svetlana Bratkova ◽  
Boyka Mihaylova

The presented study is aimed towards determining the reasons for manganese pollution of drinking water extracted from the terrace of Vacha River. The results show that this is due to the seepage of from the artificial lake, formed after the construction of a small hydropower plant. Another possible reason is the natural accumulation in the upper parts of the river terrace of poorly soluble in water manganese compounds that turn into soluble ones as a result of changes in the redox environment, which take place in the conditions of very intensive groundwater extraction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Claire Kathryn Aksamit ◽  
Mauro Carolli ◽  
Davide Vanzo ◽  
Christine Weber ◽  
Martin Schmid

As the demand for hydroelectricity progresses worldwide, small hydropower operators are increasingly examining the feasibility of using existing infrastructure (e.g., settling basins) in run-of-the-river schemes for intermittent power production. Such flexible production causes short-term discharge fluctuations (hydropeaking) in downstream reaches with potential adverse effects for the sensitive fauna and flora in alpine streams. In an experimental field study on a previously unregulated section of the upper Rhone River (Switzerland), we measured density and composition of macroinvertebrate drift in two habitats (riffle, pool) following a 15-minute hydropeaking wave. The experimental hydropeaking was replicated five times over 14 days with decreasing recovery times between peaks (8, 3, 2 days, and 24 h), and drift measurements were compared with kick samples for the benthic community. Results from the kick sampling showed that benthic macroinvertebrate abundance and composition did not significantly change between the experimental peaks. There were habitat specific reactions in macroinvertebrate drift to hydropeaking, with the pool experiencing more pronounced drift abundances than the riffle. Overall, drift abundance was not significantly correlated with recovery time, but results indicate taxa-specific differences. This research advocates for the importance of completing more in-situ field experiments in order to better understand the ecological impact of flexible power production in small hydropower plants.


Sign in / Sign up

Export Citation Format

Share Document