Effects of hysteretic models on the seismic evaluation of a collapsed irregular building from bidirectional near-fault ground motions on a shake table

2021 ◽  
Vol 247 ◽  
pp. 113087
Author(s):  
Jui-Liang Lin ◽  
Wen-Hui Chen ◽  
Fu-Pei Hsiao ◽  
Yuan-Tao Weng ◽  
Wen-Cheng Shen ◽  
...  
2020 ◽  
Vol 10 (19) ◽  
pp. 6969
Author(s):  
Chao Zhang ◽  
Guanghui Fu ◽  
Zhichao Lai ◽  
Xiuli Du ◽  
Piguang Wang ◽  
...  

This paper presents the results of shake table tests of a scaled long span cable-stayed bridge (CSB). The design principles of the scaled CSB are first introduced. The first six in-plane modes are then identified by the stochastic subspace identification (SSI) method. Furthermore, shake table tests of the CSB subjected to the non-pulse near-field (NNF) and velocity-pulse near-fault (PNF) ground motions are carried out. The tests indicated that: (1) the responses under longitudinal uniform excitation are mainly contributed by antisymmetric modes; (2) the maximum displacement of the tower occurs on the tower top node, the maximum acceleration response of the tower occurs on the middle cross beam, and the maximum bending moment of the tower occurs on the bottom section; (3) the deformation of the tower and girder subjected to uniform excitation is not always larger than that subjected to non-uniform excitation, and therefore the non-uniform case should be considered in the seismic design of CSBs.


2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


Author(s):  
Ling-Kun Chen ◽  
Peng Liu ◽  
Li-Ming Zhu ◽  
Jing-Bo Ding ◽  
Yu-Lin Feng ◽  
...  

Near-fault (NF) earthquakes cause severe bridge damage, particularly urban bridges subjected to light rail transit (LRT), which could affect the safety of the light rail transit vehicle (“light rail vehicle” or “LRV” for short). Now when a variety of studies on the fault fracture effect on the working protection of LRVs are available for the study of cars subjected to far-reaching soil motion (FFGMs), further examination is appropriate. For the first time, this paper introduced the LRV derailment mechanism caused by pulse-type near-fault ground motions (NFGMs), suggesting the concept of pulse derailment. The effects of near-fault ground motions (NFGMs) are included in an available numerical process developed for the LRV analysis of the VBI system. A simplified iterative algorithm is proposed to assess the stability and nonlinear seismic response of an LRV-reinforced concrete (RC) viaduct (LRVBRCV) system to a long-period NFGMs using the dynamic substructure method (DSM). Furthermore, a computer simulation software was developed to compute the nonlinear seismic responses of the VBI system to pulse-type NFGMs, non-pulse-type NFGMs, and FFGMs named Dynamic Interaction Analysis for Light-Rail-Vehicle Bridge System (DIALRVBS). The nonlinear bridge seismic reaction determines the impact of pulses on lateral peak earth acceleration (Ap) and lateral peak land (Vp) ratios. The analysis results quantify the effects of pulse-type NFGMs seismic responses on the LRV operations' safety. In contrast with the pulse-type non-pulse NFGMs and FFGMs, this article's research shows that pulse-type NFGM derail trains primarily via the transverse velocity pulse effect. Hence, this study's results and the proposed method can improve the LRT bridges' seismic designs.


2021 ◽  
Vol 230 ◽  
pp. 111694
Author(s):  
Héctor Dávalos ◽  
Eduardo Miranda
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document