Assessing public acceptance of the life cycle of CO2-based fuels: Does information make the difference?

Energy Policy ◽  
2020 ◽  
Vol 143 ◽  
pp. 111586 ◽  
Author(s):  
Julia Offermann-van Heek ◽  
Katrin Arning ◽  
André Sternberg ◽  
André Bardow ◽  
Martina Ziefle
2018 ◽  
Vol 6 (3) ◽  
pp. 429-435 ◽  
Author(s):  
Jungmok Ma

Abstract Proper modeling of the usage phase in Life Cycle Assessment (LCA) is not only critical due to its high impact among life cycle phases but also challenging due to high variations and uncertainty. Furthermore, when multiple products can be utilized, the optimal product usage should be considered together. The robust optimal usage modeling is proposed in this paper as the framework of usage modeling for LCA with consideration of the uncertainty and optimal usage. The proposed method seeks to optimal product usage in order to minimize the environmental impact of the usage phase under uncertainty. Numerical examples demonstrate the application of the robust optimal usage modeling and the difference from the previous approaches. Highlights The robust optimal usage modeling is proposed for the usage modeling of LCA. The proposed model seeks to sustainable product usage under uncertainty. Numerical examples demonstrate the difference from the previous approaches.


Author(s):  
Khujayev Munis ◽  

In the usual sense, ideology is not a science, although it includes scientific knowledge. The difference between ideology and science lies in the fact that it includes not only scientific knowledge and knowledge about socio-political life, but also an assessment of current events, trends, processes and various forces of this socio-political life. Strictly speaking, ideology does not exist in isolation from socio-political, national, economic, class and other communities and groups. It arises with them, forms and changes as their life cycle progresses, reflecting the interests of groups united by a given ideology.


1985 ◽  
Vol 117 (4) ◽  
pp. 481-493 ◽  
Author(s):  
J.R. Byers ◽  
D.L. Struble ◽  
J.D. Lafontaine

AbstractThe species previously recognized as Euxoa ridingsiana (Grt.) is shown to be composed of a sympatric pair of sibling species, Euxoa ridingsiana (Grt.) and Euxoa maimes (Sm.), which in the laboratory will produce viable F1 hybrids but no F2. Results of F1 sib and backcrosses show that the F1 males are fertile and the F1 females are infertile. In mating-bias tests conducted in laboratory cages, 74% of matings were conspecific and 26% interspecific. Differences in the diel periodicities of mating, which are about 2 h out of phase, may account for the mating bias. The duration of development of E. ridingsiana in the laboratory and its seasonal flight period in the field are about 2 weeks in advance of that of E. maimes. However, there is considerable overlap of the flight periods and, with the tendency of females of both species to mate several times, it is unlikely that the difference in seasonal emergence is enough to effect reproductive isolation. It is evident that, under natural conditions, reproductive isolation can be maintained entirely by species-specific sex pheromones. This mechanism of reproductive isolation is, however, apparently ineffective when moths are confined in cages in the laboratory.Biogeographic considerations suggest that the differences in life-cycle timing and mating periodicities might have been adaptations to adjust development and reproduction to prevailing ancestral environments. If the initial differentiation of the 2 species occurred in isolation and included at least an incipient shift in the pheromonal mate-recognition system, it is possible that upon reestablishment of contact between ancestral populations the differences in life-cycle timing and mating periodicities acting in concert could have effected substantial, albeit incomplete, reproductive isolation. Subsequent selection to reinforce assortative mating to preserve coadapted gene complexes could then have resulted in differentiation of discrete pheromonal systems and attainment of species status.


2014 ◽  
Vol 129 (3) ◽  
pp. 1035-1084 ◽  
Author(s):  
Chang-Tai Hsieh ◽  
Peter J. Klenow

Abstract In the United States, the average 40-year-old plant employs more than seven times as many workers as the typical plant 5 years or younger. In contrast, surviving plants in India and Mexico exhibit much slower growth, roughly doubling in size over the same age range. The divergence in plant dynamics suggests lower investments by Indian and Mexican plants in process efficiency, quality, and in accessing markets at home and abroad. In simple general equilibrium models, we find that the difference in life cycle dynamics could lower aggregate manufacturing productivity on the order of 25 percent in India and Mexico relative to the United States.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3038 ◽  
Author(s):  
José Sánchez Ramos ◽  
MCarmen Guerrero Delgado ◽  
Servando Álvarez Domínguez ◽  
José Luis Molina Félix ◽  
Francisco José Sánchez de la Flor ◽  
...  

The reduction of energy consumption in the residential sector presents substantial potential through the implementation of energy efficiency improvement measures. Current trends involve the use of simulation tools which obtain the buildings’ energy performance to support the development of possible solutions to help reduce energy consumption. However, simulation tools demand considerable amounts of data regarding the buildings’ geometry, construction, and frequency of use. Additionally, the measured values tend to be different from the estimated values obtained with the use of energy simulation programs, an issue known as the ‘performance gap’. The proposed methodology provides a solution for both of the aforementioned problems, since the amount of data needed is considerably reduced and the results are calibrated using measured values. This new approach allows to find an optimal retrofitting project by life cycle energy assessment, in terms of cost and energy savings, for individual buildings as well as several blocks of buildings. Furthermore, the potential for implementation of the methodology is proven by obtaining a comprehensive energy rehabilitation plan for a residential building. The developed methodology provides highly accurate estimates of energy savings, directly linked to the buildings’ real energy needs, reducing the difference between the consumption measured and the predictions.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4437
Author(s):  
Thomas Betten ◽  
Shivenes Shammugam ◽  
Roberta Graf

With an increasing share of renewable energy technologies in our energy systems, the integration of not only direct emission (from the use phase), but also the total life cycle emissions (including emissions during resource extraction, production, etc.) becomes more important in order to draw meaningful conclusions from Energy Systems Analysis (ESA). While the benefit of integrating Life Cycle Assessment (LCA) into ESA is acknowledged, methodologically sound integration lacks resonance in practice, partly because the dimension of the implications is not yet fully understood. This study proposes an easy-to-implement procedure for the integration of LCA results in ESA based on existing theoretical approaches. The need for a methodologically sound integration, including the avoidance of double counting of emissions, is demonstrated on the use case of Passivated Emitter and Rear Cell photovoltaic technology. The difference in Global Warming Potential of 19% between direct and LCA based emissions shows the significance for the integration of the total emissions into energy systems analysis and the potential double counting of 75% of the life cycle emissions for the use case supports the need for avoidance of double counting.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 160 ◽  
Author(s):  
Mohammad Heidari ◽  
Damien Mathis ◽  
Pierre Blanchet ◽  
Ben Amor

Research Highlights: This is the first study that analyzes the environmental performance of wood-based phase change material (PCM) panels. Background and Objectives: Life cycle assessment (LCA) is a powerful environmental management tool. However, a full LCA, especially during the early design phase of a product, is far too time and data intensive for industrial companies to conduct during their production and consumption processes. Therefore, there is an increasing demand for simpler methods to demonstrate a company’s resource efficiency potential without being data or time intensive. The goal of this study is to investigate the suitability of streamlined LCA (SLCA) tools and methods used in the building material industry, and to assess their robustness in the case study of a wood-based PCM panel. Materials and Methods: The Bilan Produit tool was selected as the SLCA tool and a matrix LCA was selected as the most commonly used SLCA method. A specific case study of a wood-based PCM panel was selected with a focus on its application in building construction in the province of Québec. Results: As a semi-quantitative LCA method, the matrix LCA provided a quick screening of the product life cycle and its hotspot stages, i.e., life cycle stages with high impact. However, the results of the full LCA and SLCA tools were quantitative and based on scientific databases. The use of the PCM panel and heating energy had the highest environmental impacts as compared to other inputs. The results of the full LCA and SLCA also identified energy consumption as a hotspot. Insufficient material or processes in the SLCA databases was one of the reasons for the difference between the results of the SLCA and full LCA. Conclusions: The examined SLCA methods provided proper explanations for the bio-based material in construction, but several limitations still exist, and the methods should be improved to make them more robust when implemented in such a specific sector.


2021 ◽  
Author(s):  
◽  
Nicolas Perez Fernandez

<p>This thesis studies the influence of construction materials on the life-cycle energy consumption and carbon dioxide (CO2) emissions of medium sized low energy consumption commercial buildings. When describing buildings by materials, there is a tendency to label them according to the main structural material used. However, the vast majority of commercial buildings use a large number of materials. Hence it is not clear which materials or combinations of materials can achieve the best performance, in terms of lifecycle energy use and CO2 emissions. The buildings analysed here were based on an actual six-storey 4250m2 (gross floor area) building, with a mixed-mode ventilation system, currently under construction at the University of Canterbury in Christchurch. While the actual building is being constructed in concrete, the author has designed two further versions in which the structures and finishes are predominantly steel or timber. Despite having different structural materials, large quantities of finishes materials are common to all three buildings; large glazed curtain walls and sun louvers, stairs balustrade and most of the offices internal finishes. A fourth building was also produced in which all possible common finishes' of the timber building were replaced by timber components. This building is labelled as Timber-plus and was included to assess the difference of the three initial 'common finishes' buildings against a building that might be expected to have a low or even negative total embodied CO2 emission in structure and finishes. In order to highlight the influence of materials, each building was designed to have a similar indoor climate with roughly the same amount of operational energy for heating and cooling over its full life. Both energy use and CO2 emissions have been assessed over three main stages in the life (and potential environmental impact) of a building: initial production of the building materials (initial embodied energy and initial embodied CO2 emissions); operation of the building (mainly in terms of its energy use); and the refurbishment and maintenance of the building materials over the building's effective life (recurrent embodied energy and CO2 emissions). Calculation of embodied energy and embodied CO2 emissions are based on materials' estimates undertaken by a Quantity Surveyor. DesignBuilder software was used to estimate whole life-cycle energy used and CO2 emitted in the operation of the buildings over a period of 60 years. Two different methods for embodied energy and embodied CO2 calculation were applied to the four buildings. The first method was by multiplying the volume of each material in the schedule calculated by the Quantity Surveyor by the New Zealand specific coefficients of embodied energy and embodied CO2 produced by Andrew Alcorn (2003). The second method was analysing the same schedule of materials with GaBi professional LCA software. Materials' inventories in GaBi are average German industry data collected by PE Europe between 1996 and 2004 (Alcorn, 2003; Nebel & Love, 2008). The energy results of the thesis show that when using the Alcorn coefficients, the total embodied energy (initial plus recurrent embodied energy) averaged 23% and operating energy consumption averaged 77% of the total life-cycle energy consumption for the four buildings. Using the GaBi coefficients, total embodied energy averaged 19% and operating energy consumption averaged 81% of the total life-cycle energy consumption of the four buildings. Using the Alcorn coefficients, the difference between the highest (steel building) and lowest (timber-plus building) life-cycle energy consumption represents a 22% increment of the highest over the lowest. Using the GaBi coefficients, the difference between the lowest (timber-plus building) and the highest (timber building) life-cycle energy consumption represents a 15% increment of the highest over the lowest. The CO2 results shows that when using the Alcorn coefficients, the total embodied CO2 emissions averaged 7% and operating CO2 emissions averaged 93%. Using the GaBi coefficients, total embodied CO2 emissions averaged 16% and operating CO2 emissions averaged 84% of the life-cycle CO2 emissions of the four buildings. Using the Alcorn coefficients, the difference between the highest (steel building) and lowest (timber-plus building) life-cycle CO2 emissions represents a 27% increment of the highest over the lower. Using the GaBi coefficients, the difference between the highest (timber building) and the lowest (timber-plus building) lifecycle CO2 emissions represents a 9% increment of the highest over the lowest. While for the case of embodied energy the Alcorn results averaged 32% higher than the GaBi, in the case of embodied CO2 the Alcorn results averaged 62% lower than the GaBi. Major differences in the results produced when using the two different sets of embodied energy and CO2 coefficients are due mainly to their different approaches to the CO2 sequestration in timber materials. While the Alcorn coefficients account for the CO2 sequestration of timber materials, the GaBi coefficients do not. This is particularly noteworthy as the CO2 sequestration of timber has been neglected in previous research. It was established that embodied energy can significantly influence the life-cycle energy consumption and CO2 emissions of contemporary low energy buildings. Using the Alcorn coefficients, the steel building embodied the equivalent of 27 years of operating energy consumption and 12 years of operating CO2 emissions. At the other end of the spectrum the timber-plus building embodied the equivalent of 11 years of operating energy consumption and has stored the equivalent of 3.6 years of operating CO2 emissions. Using the GaBi coefficients, the steel building embodied the equivalent of 19 years of operating energy consumption and 14 years of operating CO2 emissions, while the timber-plus building embodied the equivalent of 8 years of operating energy consumption and 8 years of operating CO2 emissions. These findings are of significance, for example, in the assessment and weighting of the embodied energy and embodied CO2 components of building sustainable rating tools.</p>


Sign in / Sign up

Export Citation Format

Share Document