scholarly journals Leaf canopy architecture determines light interception and carbon gain in wild and domesticated Oryza species

2018 ◽  
Vol 155 ◽  
pp. 672-680 ◽  
Author(s):  
Sayedur Rahman ◽  
Remko A. Duursma ◽  
Md. A. Muktadir ◽  
Thomas H. Roberts ◽  
Brian J. Atwell
Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 176
Author(s):  
Huanxuan Chen ◽  
Xinxin Zhao ◽  
Yingchun Han ◽  
Fangfang Xing ◽  
Lu Feng ◽  
...  

Modification of the cotton canopy results in shade avoidance and competition for light, which shows that density and spatial arrangement of cotton have a great impact on light interception. This experiment was conducted in 2018 and 2019 in the experimental field at the Institute of Cotton Research of Chinese Academy of Agricultural Science in Anyang city, Henan Province, China. Six plant densities of cotton variety SCRC28 were used to assess spatial competition for light in cotton populations during the whole growing period. Light interception data were collected and analyzed according to the spatial grid method and the extension of Simpson’s 3/8 rule. The results showed that at the bottom of the canopy, greater light interception was observed at high densities than at low densities, while in the external part of the layer of the canopy in the horizontal direction, low light interception was recorded at low densities. Leaf area, aboveground biomass and plant height were obviously correlated with light interception, and the cotton population with a higher density (8.7 plants m−2) performed best at the light interception competition, and with the highest yield. The results will provide guidance on light management through the optimization of the structure of the canopy to provide more solar radiation and a significant basis by which to improve the management of light and canopy architecture.


2012 ◽  
Author(s):  
Jingjin Zhang ◽  
Ruilong Luo ◽  
Patrick Scharf ◽  
Matthew Whiting ◽  
Qin Zhang

2002 ◽  
Vol 38 (3) ◽  
pp. 359-367 ◽  
Author(s):  
A. J. Daymond ◽  
P. Hadley ◽  
R. C. R. Machado ◽  
E. Ng

Canopy characteristics (leaf area index, fractional light interception, extinction coefficient) of mature trees of ten clonally propagated cacao cultivars were measured over a period of 14 months at an experiment site in Bahia, Brazil. Differences in leaf area index between clones became more pronounced over time. When an approximately constant leaf area index was reached (after about nine months), the leaf area index varied between clones from 2.8 to 4.5. Clonal differences in the relationship between leaf area index and fractional light interception implied differences in canopy architecture, as reflected by the range of extinction coefficients (mean values ranged from 0.63 for the clone TSH-565 to 0.82 for CC-10). The results demonstrate the potential for breeding more photosynthetically efficient cacao canopies.


2020 ◽  
Author(s):  
Mathieu Gaillard ◽  
Chenyong Miao ◽  
James C. Schnable ◽  
Bedrich Benes

Changes in canopy architecture traits have been shown to contribute to yield increases. Optimizing both light interception and radiation use efficiency of agricultural crop canopies will be essential to meeting growing needs for food. Canopy architecture is inherently 3D, but many approaches to measuring canopy architecture component traits treat the canopy as a two dimensional structure in order to make large scale measurement, selective breeding, and gene identification logistically feasible. We develop a high throughput voxel carving strategy to reconstruct three dimensional representations of maize and sorghum from a small number of RGB photos. This approach was employed to generate three dimensional reconstructions of a sorghum association population at the late vegetative stage of development. Light interception parameters estimated from these reconstructions enabled the identification of both known and previously unreported loci controlling light interception efficiency in sorghum. The approach described here is generalizable and scalable and it enables 3D reconstructions from existing plant high throughput phenotyping datasets. For future datasets we propose a set of best practices to increase the accuracy of three dimensional reconstructions.


2021 ◽  
Author(s):  
Michael C Tross ◽  
Mathieu Gaillard ◽  
Mackenzie Zwiener ◽  
Chenyong Miao ◽  
Bosheng Li ◽  
...  

Selection for yield at high planting density has reshaped the leaf canopy of maize, improving photosynthetic productivity in high density settings. Further optimization of canopy architecture may be possible. However, measuring leaf angles, the widely studied component trait of leaf canopy architecture, by hand is a labor and time intensive process. Here, we use multiple calibrated 2D images to reconstruct the 3D geometry of individual sorghum plants using a voxel carving based algorithm. Automatic skeletonization and segmentation of these 3D geometries enable quantification of the angle of each leaf for each plant. The resulting measurements are both heritable and correlated with manually collected leaf angles. This automated and scaleable reconstruction approach was employed to measure leaf-by-leaf angles for a population of 366 sorghum plants at multiple time points, resulting in 971 successful reconstructions and 3,376 leaf angle measurements from individual leaves. A genome wide association study conducted using aggregated leaf angle data identified a known large effect leaf angle gene, several previously identified leaf angle QTL from a sorghum NAM population, and novel signals. Genome wide association studies conducted separately for three individual sorghum leaves identified a number of the same signals, a previously unreported signal shared across multiple leaves, and signals near the sorghum orthologs of two maize genes known to influence leaf angle. Automated measurement of individual leaves and mapping variants associated with leaf angle reduce the barriers to engineering ideal canopy architectures in sorghum and other grain crops.


2011 ◽  
Vol 108 (3) ◽  
pp. 419-428 ◽  
Author(s):  
Christopher H. Lusk ◽  
Manuel Matías Pérez-Millaqueo ◽  
Frida I. Piper ◽  
Alfredo Saldaña

1995 ◽  
Vol 73 (2) ◽  
pp. 158-163 ◽  
Author(s):  
K. Kikuzawa

Since leaves are essentially energy-gaining organs, the arrangement of leaves in time (leaf phenology) and in space (canopy architecture) in both seasonal and nonseasonal environments can be viewed as a central element in plant strategies for carbon gain. Interrelationships among leaf longevity, leaf habit, and leaf-emergence pattern together with shoot architecture affect plant productivity. Leaf longevity is shown to maximize carbon gain through three parameters: leaf photosynthetic rate, the decrease in photosynthetic rate with leaf age, and the initial construction costs of the leaf. This theoretical approach has been extended to seasonal environments and effectively simulated the geographical pattern of leaf habits. To avoid self-shading, plants adopt two alternative modes of leaf emergence. One is successive leaf emergence, in which plants expand one leaf at a time on a shoot; this unshaded leaf utilizes full sunlight and is only replaced by a second leaf when its photosynthetic ability declines. Plants with successive leaf emergence attain high production and have straight shoots with multilayered canopy architecture. The alternative is simultaneous leaf emergence on shoots inclined to minimize self-shading through a monolayered canopy architecture. By the inclination of the shoot, each leaf on the shoot can receive sufficient light. Plants with simultaneous leaf emergence utilize the entire growing period effectively. Taken together and in the context of shoot and canopy architecture these interrelationships among leaf longevity, habit, and emergence pattern provide the basis for a synthetic theory of leaf phenology. Key words: leaf phenology, leaf longevity, leaf emergence, evergreen, deciduous habit.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1961
Author(s):  
Brendon M. Anthony ◽  
Ioannis S. Minas

Peach production in the USA has been in decline in recent decades due to poor fruit quality, reduced consumption and increased cost of production. Productivity and fruit quality can only be enhanced in the orchard through optimizing preharvest factors such as orchard design and training systems. Transition from low-density plantings (LDP) to high-density plantings (HDP) in peach is associated with the availability of reliable size controlling rootstocks. Increased densities must be combined with modern training systems to diffuse vigor and further increase light interception and yields, while optimizing light distribution, fruit quality and cost of production. Several training systems have been tested in peach with various objectives and goals, such as increasing light, water use and labor efficiencies, along with designing canopy architectures to facilitate mechanization and robotics. In general, increased planting densities increase yields, but excessive densities can promote shade, while excessive crop load can deteriorate quality. An ideal peach cropping system should optimize light interception and light distribution to balance maximum yield potential with maximum fruit quality potential. Successful management of high-density peach fruiting wall systems can lead to enhanced and uniform fruit quality, and ensure a sustainable industry.


Author(s):  
Primo Proietti ◽  
Marco Filippucci ◽  
Luigi Nasini ◽  
Luca Regni ◽  
Antonio Brunori

The research integrates the study of trees with the sciences of representation, in order to investigate the relationship between morphology and light interception in a tree, starting from the case study of an olive, modeled without using automation in survey. The representation of canopy architecture, manipulated for agricultural purposes by men, describes the action of sunlight in the tree, testing the potential of advanced digital design tools, especially the generative modeling. Through the design of a specific algorithm, the tree is interpreted like a fragmented photovoltaic panel, analyzed using 14,000 control points, corresponding to each leaves. The possibility of selecting these classes of elements becomes the instrument in interpreting the canopy structure, by finding categories describing and simulating the annual radiance and illuminance.


Sign in / Sign up

Export Citation Format

Share Document