Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada

2008 ◽  
Vol 156 (2) ◽  
pp. 387-393 ◽  
Author(s):  
J.R. Muscatello ◽  
A.M. Belknap ◽  
D.M. Janz
1987 ◽  
Vol 22 (4) ◽  
pp. 559-569 ◽  
Author(s):  
Thomas P. Hynes ◽  
Randy M. Schmidt ◽  
Tim Meadley ◽  
Neill A. Thompson

Abstract Data are provided on the release of 5 radionuclides, 17 metals and 7 major ions from a uranium mining operation in northern Saskatchewan. The downstream concentration of these contaminants is documented, and the point of “no discernible impact” is determined. Sediments in a downstream lake are monitored for uranium and molybdenum, and the post-release fate of these metals is discussed.


Author(s):  
Patrick Schukalla

Uranium mining often escapes the attention of debates around the nuclear industries. The chemical elements’ representations are focused on the nuclear reactor. The article explores what I refer to as becoming the nuclear front – the uranium mining frontier’s expansion to Tanzania, its historical entanglements and current state. The geographies of the nuclear industries parallel dominant patterns and the unevenness of the global divisions of labour, resource production and consumption. Clearly related to the developments and expectations in the field of atomic power production, uranium exploration and the gathering of geological knowledge on resource potentiality remains a peripheral realm of the technopolitical perceptions of the nuclear fuel chain. Seen as less spectacular and less associated with high-technology than the better-known elements of the nuclear industry the article thus aims to shine light on the processes that pre-figure uranium mining by looking at the example of Tanzania.


KURVATEK ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 21-34
Author(s):  
Untung Wahyudi ◽  
Excelsior T P ◽  
Luthfi Wahyudi

PT. Putera Bara Mitra used open mining system for mining operation, Yet the completion of study on the end wall slope stability that  undertaken by geotechnical PT. Putera Bara Mitra in Northwest Pit and the occured a failure in the low wall on the 1st June 2012 led to the need for analysis and design the overall slope at the mine site. To analyze and design the overall slope, used value of the recommended minimum safety. The value was based on company for single slope SF ≥ 1.2 and SF ≥ 1.3 for overall slope. The calculation used Bichop method with the help of software slide v 5.0. Geometry improvements was done at the low slopes that originally single wall with a 30 m bench height and a slope 70° with SF = 0.781, into 4 levels with SF = 1.305. The analysis explained the factors that affect the stability of the low wall included the mining slope geometry, unfavorable drainase system, material stockpiles and seismicity factors. It was necessary to do prevention efforts to maintain the stability of the slope included the redesign to slope geometry, handling surface and subsurface water in a way to control slopes draining groundwater, vegetation stabilization using and monitoring slope using Total Station with Prism and Crackmeter to determine the movement of cracks visible on the surface. 


Sign in / Sign up

Export Citation Format

Share Document