Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun

2018 ◽  
Vol 237 ◽  
pp. 1088-1097 ◽  
Author(s):  
Songqiang Deng ◽  
Tan Ke ◽  
Longtai Li ◽  
Shenwen Cai ◽  
Yuyue Zhou ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 865
Author(s):  
Lantian Su ◽  
Xinxin Liu ◽  
Guangyao Jin ◽  
Yue Ma ◽  
Haoxin Tan ◽  
...  

In recent decades, wild sable (Carnivora Mustelidae Martes zibellina) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes. Our results showed that despite wild sable gut microbial community diversity being resilient to many environmental factors, community composition was sensitive to altitude. Wild sable gut microbial communities were dominated by Firmicutes (relative abundance 38.23%), followed by Actinobacteria (30.29%), and Proteobacteria (28.15%). Altitude was negatively correlated with the abundance of Firmicutes, suggesting sable likely consume more vegetarian food in lower habitats where plant diversity, temperature and vegetation coverage were greater. In addition, our functional genes prediction and qPCR results demonstrated that energy/fat processing microorganisms and functional genes are enriched with increasing altitude, which likely enhanced metabolic functions and supported wild sables to survive in elevated habitats. Overall, our results improve the knowledge of the ecological impact of habitat change, providing insights into wild animal protection at the mountain area with hash climate conditions.


2021 ◽  
Author(s):  
Johannes Rousk ◽  
Lettice Hicks

<p>Soil microbial communities perform vital ecosystem functions, such as the decomposition of organic matter to provide plant nutrition. However, despite the functional importance of soil microorganisms, attribution of ecosystem function to particular constituents of the microbial community has been impeded by a lack of information linking microbial function to community composition and structure. Here, we propose a function-first framework to predict how microbial communities influence ecosystem functions.</p><p>We first view the microbial community associated with a specific function as a whole, and describe the dependence of microbial functions on environmental factors (e.g. the intrinsic temperature dependence of bacterial growth rates). This step defines the aggregate functional response curve of the community. Second, the contribution of the whole community to ecosystem function can be predicted, by combining the functional response curve with current environmental conditions. Functional response curves can then be linked with taxonomic data in order to identify sets of “biomarker” taxa that signal how microbial communities regulate ecosystem functions. Ultimately, such indicator taxa may be used as a diagnostic tool, enabling predictions of ecosystem function from community composition.</p><p>In this presentation, we provide three examples to illustrate the proposed framework, whereby the dependence of bacterial growth on environmental factors, including temperature, pH and salinity, is defined as the functional response curve used to interlink soil bacterial community structure and function. Applying this framework will make it possible to predict ecosystem functions directly from microbial community composition.</p>


2021 ◽  
Vol 18 (1) ◽  
pp. 99-107
Author(s):  
Дмитрий Валерьевич Сыщиков ◽  
Ирина Владимировна Агурова ◽  
Оксана Сыщикова

It was found that among the studied monitoring sites in terms of biological activity, the microbial communities of primitive undeveloped soils on sandstone and ordinary chernozem were the least susceptible to the negative influence of environmental factors. The most significant increase in cellulosolytic activity is characteristic of primitive sedimentary undeveloped soils and chernozem usual medium-thick loamy, which indicates a more active activity of microorganisms, and hence a greater availability of elements of mineral nutrition for plants.


2012 ◽  
Vol 34 (5) ◽  
pp. 1819-1826 ◽  
Author(s):  
Yan Xia ◽  
Yanyan Lv ◽  
Yuxiang Yuan ◽  
Guiping Wang ◽  
Yahua Chen ◽  
...  

2020 ◽  
Author(s):  
Daniel Tajmel ◽  
Carla Cruz Paredes ◽  
Johannes Rousk

<p>Terrestrial biogeochemical cycles are regulated by soil microorganisms. The microbial carbon release due to respiration and carbon sequestration through microbial growth determine whether soils become sources or sinks for carbon. Temperature i​s one of the most important environmental factors controlling both microbial growth and respiration. Therefore, to understand the influence of temperature on microbial processes is crucial. One strategy to predict how ecosystems will respond to warming is to use geographical ecosystem differences, in space-for-time (SFT) substitution approaches. We hypothesized (1) that microbes should be adapted to their environmental temperature leading to microbial communities with warm-shifted temperature relationships in warmer environments, and vice versa. Furthermore, we hypothesized  (2) that other factors should not influence microbial temperature relationships, and (3) that the temperature sensitivity of microbial processes (Q10) should be linked to the microbial temperature relationships.</p><p> </p><p>In this project, we investigated the effects of environmental temperature on microbial temperature relationships for microbial growth and respiration along a natural climate gradient along a transect across Europe to predict the impact of a warming climate. The transect was characterized by mean annual temperature (MAT) ranging from - 4 degrees Celsius (Greenland) to 18 degrees Celsius (Southern Spain), while other environmental factor ranges were broad and unrelated to climate, including pH from 4.0 to 8.8, C/N ratio from 7 to 50, SOM from 4% to 94% and plant communities ranging from arctic tundra to Mediterranean grasslands. More than 56 soil samples were analyzed and microbial temperature relationships were determined using controlled short-term laboratory incubations from 0 degrees Celsius to 45 degrees Celsius. The link between microbial temperature relationship and the climate was assessed by using the relationship between the environmental temperature and indices for microbial temperature relationships including the minimum (T<sub>min</sub>), optimum (T<sub>opt</sub>) and maximum temperature (T<sub>max</sub>) for microbial growth as well as for respiration. To estimate the T<sub>min</sub>, T<sub>opt </sub>and T<sub>max </sub>the square root equation, the Ratkowsky model was used.</p><p> </p><p>We found that microbial communities were adapted to their environmental temperature. The microbial temperature relationship was stronger for microbial growth than for respiration. For 1 degrees Celsius rise in MAT, T<sub>min </sub>increased 0.22 degrees Celsius for bacterial and 0.28 degrees Celsius for fungal growth, while T<sub>min </sub>for respiration increased by 0.16 per 1 degrees Celsius rise. T<sub>min </sub>was also found to be universally linked to Q10, such that higher T<sub>min </sub>resulted in higher Q10. Other environmental factors (pH, C/N ratio, SOM, vegetation cover) did not influence the temperature relationships. By incorporating the determined relationships between environmental temperature and microbial growth and respiration into large scale ecosystem models, we can get a better understanding of the influence of microbial adaptation to warmer climate on the C-exchange between soils and atmosphere.</p>


2016 ◽  
Vol 16 (S1) ◽  
Author(s):  
Alla V. Bryanskaya ◽  
Tatyana K. Malup ◽  
Elena V. Lazareva ◽  
Oxana P. Taran ◽  
Alexey S. Rozanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document