Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part I: Projected emissions, simulation design, and model evaluation

2018 ◽  
Vol 238 ◽  
pp. 903-917 ◽  
Author(s):  
Patrick Campbell ◽  
Yang Zhang ◽  
Fang Yan ◽  
Zifeng Lu ◽  
David Streets
2017 ◽  
Author(s):  
Meng Gao ◽  
Zhiwei Han ◽  
Zirui Liu ◽  
Meng Li ◽  
Jinyuan Xin ◽  
...  

Abstract. Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-ASIA III Topic 3 study design, including descriptions of participating models and model inputs, the experimental designs, and results of model evaluation, are presented. Two winter months (January 2010 and January 2013) were selected as study periods, when severe haze occurred in North China. Simulations were designed to evaluate radiative and microphysical feedbacks, together and separately, relative to simulations without feedbacks. Six modeling groups from China, Korea and the United States submitted results from seven applications of online coupled chemistry-meteorology models. Results are compared to meteorology and air quality measurements, including the Campaign on Atmospheric Aerosol Research Network of China (CARE-China) network, and the Acid Deposition Monitoring Network in East Asia (EANET). The analysis focuses on model evaluations and aerosol effects on meteorology and air quality, and potentially other interesting topics, such as the impacts of model resolutions on aerosol-radiation-weather interactions. The model evaluations for January 2010 show that current online-coupled meteorology-chemistry model can generally well reproduced meteorological features and variations of major air pollutants, including aerosol concentrations. The correlation coefficients between multi-model ensemble mean and observed near-surface temperature, water vapor mixing ratio and wind speeds can reach as high as 0.99, 0.99 and 0.98. The correlation coefficients between multi-model ensemble mean and the CARE-China observed near-surface air pollutants range from 0.51 to 0.94 (0.51 for ozone and 0.94 for PM2.5). However, large discrepancies exist between simulated aerosol chemical compositions from different models, which is due to different parameterizations of chemical reactions. The coefficient of variation (standard deviation divided by average) can reach above 1.3 for sulfate in Beijing, and above 1.6 for nitrate and organic aerosol in coastal regions, indicating these compositions are less consistent from different models. During clean periods, simulated Aerosol Optical Depths (AOD) from different models are consistent, but peak values differ during severe haze event, which can be explained by the differences in simulated inorganic aerosol concentrations and the hygroscopic growth efficiency (affected by varied RH). These results provide some brief senses of how current online-coupled meteorology-chemistry models reproduce severe haze events, and some directions for future model improvements.


2015 ◽  
Vol 8 (12) ◽  
pp. 5189-5211 ◽  
Author(s):  
M. W. Shephard ◽  
C. A. McLinden ◽  
K. E. Cady-Pereira ◽  
M. Luo ◽  
S. G. Moussa ◽  
...  

Abstract. The wealth of air quality information provided by satellite infrared observations of ammonia (NH3), carbon monoxide (CO), formic acid (HCOOH), and methanol (CH3OH) is currently being explored and used for a number of applications, especially at regional or global scales. These applications include air quality monitoring, trend analysis, emissions, and model evaluation. This study provides one of the first direct validations of Tropospheric Emission Spectrometer (TES) satellite-retrieved profiles of NH3, CH3OH, and HCOOH through comparisons with coincident aircraft profiles. The comparisons are performed over the Canadian oil sands region during the intensive field campaign (August–September, 2013) in support of the Joint Canada–Alberta Implementation Plan for Oil Sands Monitoring (JOSM). The satellite/aircraft comparisons over this region during this period produced errors of (i) +0.08 ± 0.25 ppbv for NH3, (ii) +7.5 ± 23 ppbv for CO, (iii) +0.19 ± 0.46 ppbv for HCOOH, and (iv) −1.1 ± 0.39 ppbv for CH3OH. These values mostly agree with previously estimated retrieval errors; however, the relatively large negative bias in CH3OH and the significantly greater positive bias for larger HCOOH and CO values observed during this study warrant further investigation. Satellite and aircraft ammonia observations during the field campaign are also used in an initial effort to perform preliminary evaluations of Environment Canada's Global Environmental Multi-scale – Modelling Air quality and CHemistry (GEM-MACH) air quality modelling system at high resolution (2.5 × 2.5 km2). These initial results indicate a model underprediction of ~ 0.6 ppbv (~ 60 %) for NH3, during the field campaign period. The TES/model CO comparison differences are ~ +20 ppbv (~ +20 %), but given that under these conditions the TES/aircraft comparisons also show a small positive TES CO bias indicates that the overall model underprediction of CO is closer to ~ 10 % at 681 hPa (~ 3 km) during this period.


2012 ◽  
Vol 53 ◽  
pp. 177-185 ◽  
Author(s):  
Uarporn Nopmongcol ◽  
Bonyoung Koo ◽  
Edward Tai ◽  
Jaegun Jung ◽  
Piti Piyachaturawat ◽  
...  

2017 ◽  
Author(s):  
Didin Agustian Permadi ◽  
Nguyen Thi Kim Oanh ◽  
Robert Vautard

Abstract. This research assessed the potential co-benefits associated with selected black carbon (BC) emission reduction measures on mitigation of air pollution and climate forcing in Southeast Asia (SEA). This paper presents Part 1 of the research with details on the emission inventory (EI) results and the WRF/CHIMERE model performance evaluation. The SEA regional emissions for 2007 were updated with our EI results for Indonesia, Thailand and Cambodia and used for the model input. WRF/CHIMERE simulated PM10, PM2.5 and BC over the SEA domain (0.25º x 0.25º) of the year 2007 and the results were evaluated against the available monitoring data in the domain. WRF hourly simulation results were evaluated using the observed data at 8 international airport stations in 5 SEA countries and showed a satisfactory performance. WRF/CHIMERE results for PM10 and PM2.5 showed strong seasonal influence of biomass open burning while BC distribution showed the influence of urban activities in big SEA cities. Daily average PM10 constructed from the hourly concentrations were obtained from the automatic monitoring stations in three SEA large cities, i.e. Bangkok, Kuala Lumpur and Surabaya for model evaluation. The daily observed PM2.5 and BC concentrations obtained from the Improving Air Quality in the Asian Developing Countries (AIRPET) project for 4 cities (i.e. Bangkok, Hanoi, Bandung, and Manila) were also used for model evaluation. In addition, hourly BC concentrations were taken from the measurement results of the Asian Pacific Network (APN) project at a sub-urban site in Bangkok. The modeled PM10 and BC satisfactorily met all suggested statistical criteria for PM evaluation. The modeled PM2.5/PM10 ratios estimated for four AIRPET sites ranged between 0.47–0.59, lower than observed values of 0.6–0.83. Better agreement was found for BC/PM2.5 ratios with the modeled values of 0.05–0.33 as compared to the observation values of 0.05–0.28. AODEM (extended aerosol optical depth module) was used to calculate the total columnar aerosol optical depth (AOD) and BC AOD using the internal mixing assumption. The model AOD results were evaluated against the observed AOD by both AERONET and MODIS satellite in 10 countries in the domain. Our model results showed that the BC AOD contributed 7.5–12 % of the total AOD, which was in the same ranges reported by other studies for places with intensive emissions. The Part 1 results (this study) is used in Part 2 (Permadi et al., 2017a) which calculates the regional aerosol direct radiative forcing under different emission reduction scenarios to explore potential co-benefits for air quality improvement, reduction in number of premature deaths and climate forcing mitigation in SEA in 2030.


2018 ◽  
Vol 18 (7) ◽  
pp. 4859-4884 ◽  
Author(s):  
Meng Gao ◽  
Zhiwei Han ◽  
Zirui Liu ◽  
Meng Li ◽  
Jinyuan Xin ◽  
...  

Abstract. Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-Asia III Topic 3 study design, including descriptions of participating models and model inputs, the experimental designs, and results of model evaluation, are presented. Six modeling groups from China, Korea and the United States submitted results from seven applications of online coupled chemistry–meteorology models. Results are compared to meteorology and air quality measurements, including data from the Campaign on Atmospheric Aerosol Research Network of China (CARE-China) and the Acid Deposition Monitoring Network in East Asia (EANET). The correlation coefficients between the multi-model ensemble mean and the CARE-China observed near-surface air pollutants range from 0.51 to 0.94 (0.51 for ozone and 0.94 for PM2.5) for January 2010. However, large discrepancies exist between simulated aerosol chemical compositions from different models. The coefficient of variation (SD divided by the mean) can reach above 1.3 for sulfate in Beijing and above 1.6 for nitrate and organic aerosols in coastal regions, indicating that these compositions are less consistent from different models. During clean periods, simulated aerosol optical depths (AODs) from different models are similar, but peak values differ during severe haze events, which can be explained by the differences in simulated inorganic aerosol concentrations and the hygroscopic growth efficiency (affected by varied relative humidity). These differences in composition and AOD suggest that future models can be improved by including new heterogeneous or aqueous pathways for sulfate and nitrate formation under hazy conditions, a secondary organic aerosol (SOA) formation chemical mechanism with new volatile organic compound (VOCs) precursors, yield data and approaches, and a more detailed evaluation of the dependence of aerosol optical properties on size distribution and mixing state. It was also found that using the ensemble mean of the models produced the best prediction skill. While this has been shown for other conditions (for example, the prediction of high-ozone events in the US (McKeen et al., 2005)), this is to our knowledge the first time it has been shown for heavy haze events.


2006 ◽  
Vol 40 ◽  
pp. 563-573 ◽  
Author(s):  
Sun-Kyoung Park ◽  
Charles Evan Cobb ◽  
Katherine Wade ◽  
James Mulholland ◽  
Yongtao Hu ◽  
...  

1996 ◽  
Vol 30 (9) ◽  
pp. 2687-2703 ◽  
Author(s):  
Eric Grosjean ◽  
Daniel Grosjean ◽  
Matthew P. Fraser ◽  
Glen R. Cass

Sign in / Sign up

Export Citation Format

Share Document