Hydro-chemical and microbiological pollution assessment of irrigation water in Kızılırmak Delta (Turkey)

2020 ◽  
Vol 266 ◽  
pp. 115214
Author(s):  
Şehnaz Şener ◽  
Erhan Şener ◽  
Simge Varol
2021 ◽  
Author(s):  
Vaneet Kumar ◽  
Sandip Singh ◽  
Avinash Nagpal

Abstract Soil, a connecting link between biotic and abiotic components of terrestrial ecosystem, receives different kinds of pollutants through various point and nonpoint sources. Among different sources of soil pollution, contaminated irrigation water is one of the most prominent sources affecting soils throughout the globe. The irrigation water (both surface and groundwater) are increasingly getting polluted with contaminants such as metal(loid)s due to various anthropogenic activities. The present study was conducted to analyze metal(loid) contents in agricultural soil samples (N = 24) collected from fields along the banks of rivers Beas and Sutlej flowing through Punjab state of India, using Wavelength Dispersive X-Ray Florescent (WDXRF) Spectroscopy. The soil samples were also analysed for their genotoxic potential using Allium cepa root chromosomal aberration assay. The rivers Beas and Sutlej are contaminated with municipal and industrial effluents in different parts of Punjab. The soil samples analyzed were found to have higher contents of Arsenic, Cobalt and Chromium when compared with reference values given by various international agencies. Pollution assessment using different indices like Index of geo-accumulation, Enrichment factor and Contamination factor revealed that the soil samples were highly polluted with cobalt and arsenic. The Allium cepa assay revealed that maximum genotoxicity was found in soil samples having higher contents of As and Co. Pearson’s correlation analysis revealed strong positive correlation between the different metal(loid)s which indicated common sources of these metal(loid)s. Therefore, efforts must be taken to reduce the levels of these metal(loid)s in these agricultural soils.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Tanvir A. Chowdhury ◽  
Andrew A. Meharg ◽  
Adam H. Price ◽  
Gareth J. Norton

AbstractPaddy soils in Bangladesh experience extensive irrigation with groundwater and surface water, both having variable geochemical constituents. The soils also have topological variations across the landscape. To understand the geochemical variability in the soils as affected by the different sources of irrigation water and the topographical variability, cultivation zones of paddy soils irrigated with both groundwater (n = 904) and surface water (n = 281) across Bangladesh were sampled and analyzed for a suit of seventeen geochemical elements. This study also assessed the extent and distribution of arsenic and the other geochemical elements in the paddy soils (n = 1209) as well as in a set of neighboring non-paddy soils (n = 235) within the different inundation land types (highland, medium highland-1, medium highland-2, medium lowland, lowland and very lowland) of Bangladesh. The mean concentrations of aluminum (26,000 mg/kg), cobalt (13 mg/kg), copper (32 mg/kg), iron (28,250 mg/kg), lead (18 mg/kg), magnesium (8050 mg/kg), molybdenum (1.02 mg/kg), nickel (41 mg/kg), potassium (4870 mg/kg), sodium (750 mg/kg) and zinc (70 mg/kg) in the surface water-irrigated paddy soils were found to be significantly (0.001 ≥ p ≤ 0.05) higher compared to the concentrations in the soils irrigated with groundwater (23,400; 12; 28; 25,650; 17; 7000; 0.96; 36; 4350; 600; and 62 mg/kg, respectively). Therefore, surface water used for paddy irrigation could increase the inputs of a number of toxic elements in the paddy soils having potential risk of crop contamination. Arsenic in the paddy and non-paddy soils varied significantly (F = 24.74, p < 0.001 and F = 3.42, p < 0.01, respectively) within the inundation land types, the very lowland (9.95 and 6.72 mg/kg, respectively) and lowland (8.33 and 5.20 mg/kg, respectively) having the highest mean arsenic concentrations and the medium highland-1 (5.27 and 5.17 mg/kg, respectively) having the lowest. The concentrations of the other geochemical elements analyzed were also observed to be higher, in general, in the soils of very lowland and lowland. Since the low-level lands are predominantly used for paddy cultivation, higher concentrations of various toxic elements, particularly arsenic, in such soils pose an increased risk of rice toxicity in Bangladesh. The results of this study present an inimitable geochemical database for the surface soils across Bangladesh which can be used in any future studies on the geomorphologically variable agricultural and non-agricultural Bangladeshi soils, providing a basis for environmental pollution assessment and sustainable mitigation approaches.


2020 ◽  
Vol 0 (2) ◽  
pp. 21-25
Author(s):  
Nikolay Dubenok ◽  
Andrey Novikov ◽  
Sergei Borodychev ◽  
Maria Lamskova

At the stage of water treatment for irrigation systems, the efficiency capture coarse and fine mechanical impurities, as well as oil products and organic compounds affects the reliability of the equipment of the irrigation network and the safety of energy exchange processes in irrigated agricultural landscapes. The violation of work irrigation system can cause disruptions in irrigation schedules of agricultural crops, crop shortages, degradation phenomena on the soil and ecological tension. For the combined irrigation system, a water treatment unit has been developed, representing a hydrocyclone apparatus with a pipe filter in the case. For the capacity of 250 m3/h the main geometrical dimensions of hydrocyclone have been calculated. To organize the capture petroleum products and organic compounds, it has been proposed a modernization of a hydrocyclone unit, consisting in dividing the cylindrical part of the apparatus into two section. The first is section is for input irrigation water, the second one is for additional drainage of clarified irrigation water after sorption purification by the filter, placed on the disk and installed coaxially with the drain pipe and the pipe filter.


2020 ◽  
Vol 96 (3) ◽  
pp. 384-398 ◽  
Author(s):  
Gi-Eu Lee ◽  
Kimberly Rollins ◽  
Loretta Singletary

Author(s):  
Rumiana Kireva ◽  
Roumen Gadjev

The deficit of the irrigation water requires irrigation technologies with more efficient water use. For cucumbers, the most suitable is the drip irrigation technology. For establishing of the appropriate irrigation schedule of cucumbers under the soil and climate conditions in the village of Chelopechene, near Sofia city, the researchеs was conducted with drip irrigation technology, adopting varying irrigation schedules and hydraulic regimes - from fully meeting the daily crops water requirements cucumbers to reduced depths with 20% and 40%. It have been established irrigation schedule with adequate pressure flows in the water source, irrigation water productivity and yields of in plastic unheated greenhouses of the Sofia plant.


10.1596/k8697 ◽  
2016 ◽  
Author(s):  
Caroline van den Berg ◽  
Sana Kh. H. Agha Al Nimer

1930 ◽  
Vol 2 (2) ◽  
pp. 90-95
Author(s):  
MANTARO KONDO ◽  
TAMOTSU OKAMURA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document