scholarly journals High-frequency monitoring of neonicotinoids dynamics in soil-water systems during hydrological processes

2021 ◽  
pp. 118219
Author(s):  
Y.H. Niu ◽  
L. Wang ◽  
Z. Wang ◽  
S.X. Yu ◽  
J.Y. Zheng ◽  
...  
2016 ◽  
Vol 20 (5) ◽  
pp. 1851-1868 ◽  
Author(s):  
Bas van der Grift ◽  
Hans Peter Broers ◽  
Wilbert Berendrecht ◽  
Joachim Rozemeijer ◽  
Leonard Osté ◽  
...  

Abstract. Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream water bodies. This paper introduces new insights in nutrient sources and transport processes in a polder in the Netherlands situated below sea level using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring programme at six locations within the drainage area. Seasonal trends and short-scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N loss from agricultural lands. The NO3 loads appear as losses via tube drains after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration and turbidity almost doubled during operation of the pumping station, which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but retention of TP due to sedimentation of particulate P then results in the absence of rainfall induced TP concentration peaks. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze–thaw cycle. All these observations suggest that the P retention potential of polder water systems is primarily due to the artificial pumping regime that buffers high flows. As the TP concentration is affected by operation of the pumping station, timing of sampling relative to the operating hours of the pumping station should be accounted for when calculating P export loads, determining trends in water quality, or when judging water quality status of polder water systems.


2015 ◽  
Vol 12 (8) ◽  
pp. 8337-8380 ◽  
Author(s):  
B. van der Grift ◽  
H. P. Broers ◽  
W. L. Berendrecht ◽  
J. C. Rozemeijer ◽  
L. A. Osté ◽  
...  

Abstract. Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas. This paper introduces new insights in nutrient sources and transport processes in a low elevated polder in the Netherlands using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring program at six locations within the drainage area. Seasonal trends and short scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N-loss from agricultural lands. The NO3 loads appear as losses with drain water discharge after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration almost doubled during operation of the pumping station which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The by rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but this is then buffered in the water system due to sedimentation of particulate P. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze–thaw cycle. All these observations suggest that the P retention potential of polder water systems is highly due to the artificial pumping regime that buffers high flows. As the TP concentration is affected by operation of the pumping station, timing of sampling relative to the operating hours of the pumping station should be accounted for when calculating P export loads, determining trends in water quality or when judging water quality status of polder water systems.


2021 ◽  
Author(s):  
Tailin Li ◽  
Nina Noreika ◽  
Jakub Jeřábek ◽  
Tomáš Dostál ◽  
David Zumr

<p>A better understanding of hydrological processes in agricultural catchments is not only crucial to hydrologists but also helpful for local farmers. Therefore, we have built the freely-available web-based WALNUD dataset (Water in Agricultural Landscape – NUčice Database) for our experimental catchment Nučice (0.53 km<sup>2</sup>), the Czech Republic. We have included observed precipitation, air temperature, stream discharge, and soil moisture in the dataset. Furthermore, we have applied numerical modelling techniques to investigate the hydrological processes (e.g. soil moisture variability, water balance) at the experimental catchment using the dataset.</p><p>The Nučice catchment, established in 2011, serves for the observation of rainfall-runoff processes, soil erosion and water balance of the cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9 %, and the climate is humid continental (mean annual temperature 7.9 °C, average annual precipitation 630 mm). The catchment consists of three fields covering over 95 % of the area. There is a narrow stream which begins as a subsurface drainage pipe in the uppermost field draining the water at catchment. The typical crops are winter wheat, rapeseed, mustard and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed in the area of the basin, and an H flume to monitor the stream discharge, water turbidity and basic water quality indicators. The soil water content (at point scale) and groundwater level are also recorded. Recently, we have installed two cosmic-ray soil moisture sensors (StyX Neutronica) to estimate large-scale topsoil water content at the catchment.</p><p>Even though the soil management and soil properties in the fields of Nučice seem to be nearly homogeneous, we have observed variability in the topsoil moisture pattern. The method for the explanation of the soil water regime was the combination of the connectivity indices and numerical modelling. The soil moisture profiles from the point-scale sensors were processed in a 1-D physically-based soil water model (HYDRUS-1D) to optimize the soil hydraulic parameters. Further, the soil hydraulic parameters were used as input into a 3D spatially-distributed model, MIKE-SHE. The MIKE-SHE simulation has been mainly calibrated with rainfall-runoff observations. Meanwhile, the spatial patterns of the soil moisture were assessed from the simulation for both dry and wet catchment conditions. From the MIKE-SHE simulation, the optimized soil hydraulic parameters have improved the estimation of soil moisture dynamics and runoff generation. Also, the correlation between the observed and simulated soil moisture spatial patterns showed different behaviors during the dry and wet catchment conditions.</p><p>This study has been supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS20/156/OHK1/3T/11 and the Project SHui which is co-funded by the European Union Project: 773903 and the Chinese MOST.</p>


2021 ◽  
Author(s):  
Paul Floury ◽  
Julien Bouchez ◽  
Jérôme Gaillardet ◽  
Arnaud Blanchouin ◽  
Patrick Ansart

<p>Shifts in water fluxes through the Critical Zone exert a major control on stream solute export, but the exact nature of this control is still obscure, especially at the scale of relatively short flood events. To address this question, here we take advantage of a new high-frequency, flood event stream concentration–discharge (C-Q) dataset. Stream dissolved concentration of major species were recorded every 40 minutes over five major flood events in 2015/2016 recorded in a French agricultural watershed using device called the "River Lab". We focus our attention on the flood recession periods to highlight how C-Q relationships are controlled by hydrological processes within the catchment rather than by the dynamics of the rain event.</p><p>We show that for C-Q relationships resulting from data acquisition over multi-year time scales and including several flood events, lumping all trends together potentially result in biases in characteristic parameters (such as exponents of a power-law fit), that are strongly dictated by data from the recession periods of the most intense floods alone.</p><p>In order to evaluate the role of mixing of pre-existing water and solute pools in the catchment, we apply to solute fluxes an approach previously developed in catchment hydrology linking water storage and stream flow. This approach, which considers that hydrological processes prevail over chemical interactions during the short time spans of flood events, allows us to reproduce at first order a large diversity of shapes of recession C-Q relationships.</p>


2016 ◽  
Vol 20 (9) ◽  
pp. 3619-3629 ◽  
Author(s):  
Frans C. van Geer ◽  
Brian Kronvang ◽  
Hans Peter Broers

Abstract. Four sessions on "Monitoring Strategies: temporal trends in groundwater and surface water quality and quantity" at the EGU conferences in 2012, 2013, 2014, and 2015 and a special issue of HESS form the background for this overview of the current state of high-resolution monitoring of nutrients. The overview includes a summary of technologies applied in high-frequency monitoring of nutrients in the special issue. Moreover, we present a new assessment of the objectives behind high-frequency monitoring as classified into three main groups: (i) improved understanding of the underlying hydrological, chemical, and biological processes (PU); (ii) quantification of true nutrient concentrations and loads (Q); and (iii) operational management, including evaluation of the effects of mitigation measures (M). The contributions in the special issue focus on the implementation of high-frequency monitoring within the broader context of policy making and management of water in Europe for support of EU directives such as the Water Framework Directive, the Groundwater Directive, and the Nitrates Directive. The overview presented enabled us to highlight the typical objectives encountered in the application of high-frequency monitoring and to reflect on future developments and research needs in this growing field of expertise.


2017 ◽  
Vol 57 ◽  
pp. 329-337 ◽  
Author(s):  
Yaxian Zhang ◽  
Hua Li ◽  
Libo Gong ◽  
Guowen Dong ◽  
Liang Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document