scholarly journals Solid matter and soluble compounds collected from cigarette smoke and heated tobacco product aerosol using a laboratory designed puffing setup

2021 ◽  
pp. 112619
Author(s):  
Ana Amorós-Pérez ◽  
Laura Cano-Casanova ◽  
María del Carmen Román-Martínez ◽  
María Ángeles Lillo-Ródenas
2021 ◽  
Vol 30 (3) ◽  
pp. 109-126
Author(s):  
Laurent Poget ◽  
Catherine Goujon ◽  
Samuel Kleinhans ◽  
Serge Maeder ◽  
Jean-Pierre Schaller

Summary In order to assess robustness for the reduction of harmful and potentially harmful constituent (HPHC) levels generated by the Tobacco Heating System 2.2 (THS 2.2), a heated tobacco product, we compared the aerosol of this product with mainstream smoke from the 3R4F reference cigarette under different conditions of temperature and humidity. The desired climatic conditions were achieved by using an air-conditioning system coupled with the smoking-machine housing. Two extreme climatic conditions were selected, representing a “Hot and Dry” climate (30 °C and 35% relative humidity RH) and a “Hot and Very Humid” climate (30 °C and 75% RH). In addition, aerosol and smoke were generated using the standard conditions recognized for smoking-machine analyses of tobacco products (22 °C and 60% RH), which were close to the climatic conditions defined for “Subtropical and Mediterranean” environments (25 °C and 60% RH). The experimental conditions were chosen to simulate the use of THS 2.2 and cigarettes under extreme conditions of temperature and humidity. HeatSticks and cigarettes taken from freshly opened packs were subjected to short-term conditioning from two to a few more days under the same experimental conditions. We analyzed 54 HPHCs in THS 2.2 aerosol and 3R4F cigarette smoke, generated in accordance with the Health Canada Intense (HCI) standard, using modified temperature and humidity conditions for sample conditioning and machine-smoking experiments. We used a volume-adjusted approach for comparing HPHC reductions across the different climatic conditions investigated. Although a single puffing regimen was used, the total puff volume recorded for the 3R4F cigarette smoke varied due to the influence of temperature and humidity on combustion rate, which justified the use of a volume-adjusted approach. Volume-adjusted yields were derived from HPHC yields expressed in mass-per-tobacco stick normalized per total puff volume. The results indicated that, regardless of the considered climatic conditions, the HPHC levels investigated in THS 2.2 aerosol were reduced by at least 90%, on average, when compared with the concentrations in 3R4F cigarette mainstream smoke. This confirmed the robustness in performance for THS 2.2 to deliver reduced levels of HPHCs under the extreme climatic conditions investigated in this study. In order to further characterize the robustness of these reductions, the lowest reduction performance achieved for individual HPHCs across all climatic conditions was used to define the threshold for a robust reduction. The majority of the 54 HPHCs investigated in THS 2.2 aerosol showed more than 90% reduction. Calculations derived from nicotine-adjusted yields also confirmed robust reductions for all investigated HPHCs. The small differences in absolute reduction between the volume- and nicotine-adjusted approaches were predominantly attributed to a combination of the differences in both nominal nicotine deliveries and total puff volumes between THS 2.2 and 3R4F cigarettes; however, this did not influence the determination of robustness. Our findings confirm the value of this approach for assessing the robustness of a product’s performance under different climatic conditions.


Author(s):  
T Paschke ◽  
G Scherer ◽  
WD Heller

AbstractThis paper presents a literature review of published scientific studies of the effects of tobacco product ingredients and various experimental additives on cigarette smoke composition and its biological activity. The format of this work is that of an uncommented reference paper rather than a critical scientific review. Therefore, the mention of an ingredient in this survey does not imply that it is used by the tobacco industry or that it is covered by any existing national regulations. A broad range of scientific papers and patents on tobacco ingredients is included as well as studies on experimental ingredients. This review may provide public health officials as well as scientists in government agencies and in the tobacco industry with a helpful overview of published information on tobacco product ingredients, their transfer into mainstream cigarette smoke, pyrolysis products, and influence on the biological activity of mainstream cigarette smoke.


2012 ◽  
Vol 15 (2) ◽  
pp. 596-602 ◽  
Author(s):  
R. D. Kennedy ◽  
R. A. Millstein ◽  
V. W. Rees ◽  
G. N. Connolly

2021 ◽  
Author(s):  
Arunava Ghosh ◽  
Vishruth Girish ◽  
Monet Lou Yuan ◽  
Raymond D. Coakley ◽  
Neil E. Alexis ◽  
...  

The outbreak of coronavirus disease 2019 (COVID-19) has extensively impacted global health. The causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), binds to the angiotensin-converting enzyme 2 (ACE2) receptor, a transmembrane metallo-carboxypeptidase that is expressed in both membrane-anchored (mACE2) and soluble (sACE2) forms in the lung. Tobacco use has been speculated as a vulnerability factor for contracting SARS-CoV-2 infection and subsequent disease severity, whilst electronic cigarettes (e-cigarettes) have been shown to induce harmful proteomic and immune changes in the lungs of vapers. We therefore tested the hypothesis that combustible tobacco (e.g. cigarettes) and non-combustible e-cigarettes could affect ACE2 activity and subsequent SARS-CoV-2 infection. We observed that sACE2 activity was significantly higher in bronchoalveolar lavage fluid from both smokers and vapers compared to age-matched non-smokers. Exposure to cigarette smoke increased ACE2 levels, mACE2 activity, and sACE2 in primary bronchial epithelial cultures. Finally, treatment with either cigarette smoke condensate or JUUL e-liquid increased infections with a spike-coated SARS-CoV-2 pseudovirus. Overall, these observations suggest that tobacco product use elevates ACE2 activity and increases the potential for SARS-CoV-2 infection through enhanced spike protein binding.


Author(s):  
Catherine Goujon ◽  
Samuel Kleinhans ◽  
Serge Maeder ◽  
Laurent Poget ◽  
Jean-Pierre Schaller

SummaryIn the absence of standards specific for testing the reduction robustness of the levels of harmful and potentially harmful constituents (HPHCs), the aerosol from the THS 2.2, a heated tobacco product, was compared with the mainstream smoke of the 3R4F reference cigarette over a broad range of machine-smoking regimes. The average reduction and the introduced concept of threshold limits of robust reduction were derived from HPHC concentrations, in mass per tobacco-stick normalized per total puff volume, to propose an alternative for the assessment of products where nicotine-adjusted yields would be inappropriate. In addition, this study explores the influence of 3R4F reference cigarette filter ventilation, and discusses the roles of temperature and precursors in the present context of robustness of HPHC reduction. Fifty-four HPHCs were analyzed under multiple regimes in THS 2.2 aerosol and 3R4F cigarette smoke. The average reduction of HPHC concentrations compared across all regimes characterized the robustness. Threshold limits of reduction of individual HPHCs were statistically determined across all regimes. The results observed under Health Canada Intense (HCI) and more intense regimes indicated that on average the reductions in HPHCs levels investigated in THS 2.2 aerosol were more than 90% and that the majority of the 54 HPHCs investigated in THS 2.2 aerosol showed more than 90% reduction. The robustness of THS 2.2 in maintaining the levels of reduction of representative HPHCs, whatever the puffing regime, can be quantified. The mass of HPHC per tobacco-stick normalized per total puff volume is a valuable approach to compare the robustness of the performance of a product over a large range of puffing conditions. Our findings will greatly complement the assessment for robustness of current and future similar products where classical approaches would present limitations.


2016 ◽  
Vol 28 (5) ◽  
pp. 226-240 ◽  
Author(s):  
Giuseppe Lo Sasso ◽  
Bjoern Titz ◽  
Catherine Nury ◽  
Stéphanie Boué ◽  
Blaine Phillips ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document