Sea level rise impacts on rural coastal social-ecological systems and the implications for decision making

2018 ◽  
Vol 90 ◽  
pp. 122-134 ◽  
Author(s):  
A. Bhattachan ◽  
M.D. Jurjonas ◽  
A.C. Moody ◽  
P.R. Morris ◽  
G.M. Sanchez ◽  
...  
2017 ◽  
Vol 74 (9) ◽  
pp. 2298-2308 ◽  
Author(s):  
Jessica Melbourne-Thomas ◽  
Andrew J Constable ◽  
Elizabeth A Fulton ◽  
Stuart P Corney ◽  
Rowan Trebilco ◽  
...  

Abstract Policy- and decision-makers require assessments of status and trends for marine species, habitats, and ecosystems to understand if human activities in the marine environment are sustainable, particularly in the face of global change. Central to many assessments are statistical and dynamical models of populations, communities, ecosystems, and their socioeconomic systems and management frameworks. The establishment of a national system that could facilitate the development of such model-based assessments has been identified as a priority for addressing management challenges for Australia’s marine environment. Given that most assessments require cross-scale information, individual models cannot capture all of the spatial, temporal, biological, and socioeconomic scales that are typically needed. Coupling or integrating models across scales and domains can expand the scope for developing comprehensive and internally consistent, system-level assessments, including higher-level feedbacks in social–ecological systems. In this article, we summarize: (i) integrated modelling for marine systems currently being undertaken in Australia, (ii) methods used for integration and comparison of models, and (iii) improvements to facilitate further integration, particularly with respect to standards and specifications. We consider future needs for integrated modelling of marine social–ecological systems in Australia and provide a set of recommendations for priority focus areas in the development of a national approach to integrated modelling. These recommendations draw on—and have broader relevance for—international efforts around integrated modelling to inform decision-making for marine systems.


2021 ◽  
Vol 13 (17) ◽  
pp. 9751
Author(s):  
Rudy Vannevel ◽  
Peter L. M. Goethals

Social-ecological systems and governance are complex systems and crises that affect those systems are likely to be complex as well. Environmental topics are multi-faceted with respect to both structure and content. Structural complexity is about societal and institutional organization and management, whereas contentual complexity deals with environmental (or societal) analyses, knowledge, and problem-solving. Interactions between both are manifold, and it is essential they are included in decision-making. Describing these interactions results in a series of nineteen units, arranged in a matrix according to their prevailing mutual dependencies. These units show dominant processes and concepts, representative of environmental analysis. This approach, called ACCU (aggregation of concepts and complex adapted systems units), is provided with evidence through practices of, in particular, water governance.


2020 ◽  
Vol 13 (1) ◽  
pp. 177
Author(s):  
Tatiana Vlasova ◽  
Andrey N. Petrov ◽  
Sergey Volkov

Monitoring of social-ecological systems dynamics and sustainability is of high importance in a rapidly changing Arctic. The goal of this essay is to discuss and articulate the principles for designing a suitable Arctic sustainability monitoring framework based on the convergence between resilience thinking and sustainable development paradigms. We propose to integrate sustainability monitoring into the socially-oriented observations (SOO) methodologies in order to design Arctic sustainability monitoring as a transdisciplinary participatory activity that results in both co-production of sustainability knowledge and building more sustainable and resilient Arctic social-ecological systems by enabling continuous observation and informed decision-making. Special attention is given to approaches for developing sustainability indicators to monitor trends in Arctic social-ecological systems. It is argued that sustainability monitoring is a valuable component of the Arctic sustainability knowledge system that integrates social and natural sciences and engages Indigenous, local, and traditional knowledge, entrepreneurship, education, and decision-making. Bringing together diverse knowledge systems is the primary route to collectively pursue sustainability in a holistic, polycentric, multifaceted, participatory, and knowledge-driven manner. Transdisciplinary SOO approaches and methods are specifically discussed.


Author(s):  
Marc J. Stern

This chapter covers systems theories relevant to understanding and working to enhance the resilience of social-ecological systems. Social-ecological systems contain natural resources, users of those resources, and the interactions between each. The theories in the chapter share lessons about how to build effective governance structures for common pool resources, how to facilitate the spread of worthwhile ideas across social networks, and how to promote collaboration for greater collective impacts than any one organization alone could achieve. Each theory is summarized succinctly and followed by guidance on how to apply it to real world problem solving.


2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Rasha M. Abou Samra ◽  
Maie El-Gammal ◽  
Nawaf Al-Mutairi ◽  
Mohammad M. Alsahli ◽  
Mahmoud. S. Ibrahim

2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

Sign in / Sign up

Export Citation Format

Share Document