scholarly journals Sea-ice control on deglacial lower cell circulation changes recorded by Drake Passage deep-sea corals

2020 ◽  
Vol 544 ◽  
pp. 116405 ◽  
Author(s):  
David J. Wilson ◽  
Torben Struve ◽  
Tina van de Flierdt ◽  
Tianyu Chen ◽  
Tao Li ◽  
...  
2004 ◽  
Vol 219 (3-4) ◽  
pp. 297-309 ◽  
Author(s):  
Norbert Frank ◽  
Martine Paterne ◽  
Linda Ayliffe ◽  
Tjeerd van Weering ◽  
Jean-Pierre Henriet ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
pp. 1379
Author(s):  
Fenlian Wang ◽  
Gaowen He ◽  
Xiguang Deng ◽  
Yong Yang ◽  
Jiangbo Ren

Rare earth elements and yttrium (REY) are widely recognized as strategic materials for advanced technological applications. Deep-sea sediments from the eastern South Pacific and central North Pacific were first reported as potential resources containing significant amounts of REY that are comparable to, or greater than, those of land-based deposits. Despite nearly a decade of research, quantitative abundances and spatial distributions of these deposits remain insufficient. Age controls are generally absent due to the lack of biostratigraphic constraints. Thus, the factors controlling the formation of REY-rich sediments are still controversial. In this study, the REY contents of surface sediments (<2 m depth) in 14 piston cores from the Middle and Western Pacific were investigated. The results show that deep-sea sediments with high REY contents (>1000 μg/g) were mainly concentrated around seamounts (e.g., the Marshall Islands). The REY contents of surface sediments generally decreased with distance from the seamounts. Biostratigraphic and fish teeth debris (apatite) Sr isotopic stratigraphy of one piston cores (P10) from the Middle Pacific indicate that deep-sea sediments with high REY contents were aged from early Oligocene to early Miocene. Since the opening of the Drake Passage during the early Oligocene, the northward-flowing Antarctic Bottom Water (AABW) would have led to an upwelling of nutrients around seamounts with topographic barriers, and at the same time, AABW would delay the rate of sediment burial to try for enough time for REY entering and enriching in the apatite (fish teeth debris). Understanding the spatial distribution of fertile regions for REY-rich sediments provides guidance for searching for other REY resources in the Pacific and in other oceans.


2020 ◽  
Author(s):  
◽  
Moses Thiong'o

The oceans make up about 70% of the earth’s surface and serve as habitats for many deep and shallow creatures. In depths of about 50 meters and more, deep-sea corals and sponges occur mostly along seamounts, continental margins, undersea canyons and ridges. They, deep-sea corals and sponges, play a key role in supporting the health of the ocean as they preserve the biodiversity and long-term sustainability of commercial and recreational fish species. With the many benefits that are attached to deep-sea corals and sponges, the Deep-Sea Corals and Research Technology Program (DSCRTP) has been collecting coral and sponge location data from hundreds of remotely operated vehicle (ROV) surveys. However, DSCRTP does not have a spatial representation of the area covered by each ROV while searching for corals and sponges in the deep-sea. A spatial representation would provide critical information to researchers and managers to understand where a survey for corals and sponges has happened, and where a survey is yet to be done in the deep-sea. Therefore, the goal of this study is to create a spatial representation of the ROV surveys that have been collected in Monterey Bay and Hawaii sections of the deep-sea.


2011 ◽  
Vol 75 (16) ◽  
pp. 4416-4425 ◽  
Author(s):  
Nivedita Thiagarajan ◽  
Jess Adkins ◽  
John Eiler

Author(s):  
Andrew P. DeVogelaere ◽  
Erica J. Burton ◽  
Tonatiuh Trejo ◽  
Chad E. King ◽  
David A. Clague ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0211009 ◽  
Author(s):  
Elena Rybakova ◽  
Antonina Kremenetskaia ◽  
Andrey Vedenin ◽  
Antje Boetius ◽  
Andrey Gebruk
Keyword(s):  
Sea Ice ◽  
Deep Sea ◽  

Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 533-543 ◽  
Author(s):  
Sheila Griffin ◽  
Ellen R M Druffel

Radiocarbon measurements in deep-sea corals from the Little Bahama Bank were used to determine the source of carbon to the skeletal matrices. Specimens of Lophelia, Gerardia, Paragorgia johnsoni and Corallium noibe were sectioned according to visible growth rings and/or stem diameter. We determined that the source of carbon to the corals accreting organic matter was primarily from surface-derived sources. Those corals that accrete a calcerous skeleton were found to obtain their carbon solely from dissolved inorganic carbon (DIC) in sea water from the depth at which the corals grew. These results, in conjunction with growth-rate studies using short-lived radioisotopes, support the use of deep-sea corals to reconstruct time histories of transient and non-transient tracers at depth in the oceans.


Sign in / Sign up

Export Citation Format

Share Document