On the impact of single-phase plug-in electric vehicles charging and rooftop solar photovoltaic on distribution transformer aging

2017 ◽  
Vol 148 ◽  
pp. 202-209 ◽  
Author(s):  
M.K. Gray ◽  
W.G. Morsi
2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Atul Kumar1 ◽  
Srivastava Manish2

Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.           Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.


Author(s):  
Chin Kim Gan ◽  
Sara Ragab Mahmoud ◽  
Kyairul Azmi Baharin ◽  
Mohd Hendra Hairi

<span>The installation of small-scale solar photovoltaic system has recently gaining popularity in Malaysia mainly driven by the Feed-in Tariff scheme. Given its relatively small generation capacity, the single-phase solar inverters are not required to comply with power quality standard. Neverthelss, the impact of small-scale solar system on the grid could become significant when the penetration is increasing over the years. In this regard, this paper presents a case study on the influence of single-phase grid-connected solar photovoltaic systems on the total harmonic distortion for current at the point of common coupling. Field measurements have been carried out for a total of 12 single-phase solar systems which were installed at three different locations at Universiti Teknikal Malaysia Melaka. Detailed analyses have been performed to characterize the aggregated current harmonic performance for the overall system.  The findings from the presented case study suggest that the current quality from the inverter is highly dependent on the level of inverter output. Hence, the proper selection of the array-to-inverter ratio at the system design stage could greatly improve the overall total harmonic performance performance for current.</span><span>The installation of small-scale solar photovoltaic system has recently gaining popularity in Malaysia mainly driven by the Feed-in Tariff scheme. Given its relatively small generation capacity, the single-phase solar inverters are not required to comply with power quality standard. Neverthelss, the impact of small-scale solar system on the grid could become significant when the penetration is increasing over the years. In this regard, this paper presents a case study on the influence of single-phase grid-connected solar photovoltaic systems on the total harmonic distortion for current at the point of common coupling. Field measurements have been carried out for a total of 12 single-phase solar systems which were installed at three different locations at Universiti Teknikal Malaysia Melaka. Detailed analyses have been performed to characterize the aggregated current harmonic performance for the overall system.  The findings from the presented case study suggest that the current quality from the inverter is highly dependent on the level of inverter output. Hence, the proper selection of the array-to-inverter ratio at the system design stage could greatly improve the overall total harmonic performance performance for current.</span>


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 2
Author(s):  
Elisavet Koutsi ◽  
Sotirios Deligiannis ◽  
Georgia Athanasiadou ◽  
Dimitra Zarbouti ◽  
George Tsoulos

During the last few decades, electric vehicles (EVs) have emerged as a promising sustainable alternative to traditional fuel cars. The work presented here is carried out in the context of the Horizon 2020 project MERLON and targets the impact of EVs on electrical grid load profiles, while considering both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation modes. Three different charging policies are considered: the uncontrolled charging, which acts as a reference scenario, and two strategies that fall under the umbrella of individual charging policies based on price incentive strategies. Electricity prices along with the EV user preferences are taken into account for both charging (G2V) and discharging (V2G) operations, allowing for more realistic scenarios to be considered.


Sign in / Sign up

Export Citation Format

Share Document