Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge

2019 ◽  
Vol 21 ◽  
pp. 618-631 ◽  
Author(s):  
Xueyuan Wang ◽  
Xuezhe Wei ◽  
Haifeng Dai
Batteries ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 35 ◽  
Author(s):  
Peter Kurzweil ◽  
Mikhail Shamonin

Frequency-dependent capacitance C(ω) is a rapid and reliable method for the determination of the state-of-charge (SoC) of electrochemical storage devices. The state-of-the-art of SoC monitoring using impedance spectroscopy is reviewed, and complemented by original 1.5-year long-term electrical impedance measurements of several commercially available supercapacitors. It is found that the kinetics of the self-discharge of supercapacitors comprises at least two characteristic time constants in the range of days and months. The curvature of the Nyquist curve at frequencies above 10 Hz (charge transfer resistance) depends on the available electric charge as well, but it is of little use for applications. Lithium-ion batteries demonstrate a linear correlation between voltage and capacitance as long as overcharge and deep discharge are avoided.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
Xiaohua Chen ◽  
Yong Li ◽  
Juan Wang

Olivine-structure LiFePO4 is considered as promising cathode materials for lithium-ion batteries. However, the material always sustains poor electron conductivity, severely hindering its further commercial application. In this work, zinc oxide and carbon co-modified LiFePO4 nanomaterials (LFP/C-ZnO) were prepared by an inorganic-based hydrothermal route, which vastly boosts its performance. The sample of LFP/C-xZnO (x = 3 wt%) exhibited well-dispersed spherical particles and remarkable cycling stability (initial discharge capacities of 138.7 mAh/g at 0.1 C, maintained 94.8% of the initial capacity after 50 cycles at 0.1 C). In addition, the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) disclose the reduced charge transfer resistance from 296 to 102 Ω. These suggest that zinc oxide and carbon modification could effectively minimize charge transfer resistance, improve contact area, and buffer the diffusion barrier, including electron conductivity and the electrochemical property. Our study provides a simple and efficient strategy to design and optimize promising olivine-structural cathodes for lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document