Entrotaxis-Jump as a hybrid search algorithm for seeking an unknown emission source in a large-scale area with road network constraint

2020 ◽  
Vol 157 ◽  
pp. 113484 ◽  
Author(s):  
Yong Zhao ◽  
Bin Chen ◽  
Zhengqiu Zhu ◽  
Feiran Chen ◽  
Yiduo Wang ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
De-Xin Yu ◽  
Zhao-Sheng Yang ◽  
Yao Yu ◽  
Xiu-Rong Jiang

Combined with improved Pallottino parallel algorithm, this paper proposes a large-scale route search method, which considers travelers’ route choice preferences. And urban road network is decomposed into multilayers effectively. Utilizing generalized travel time as road impedance function, the method builds a new multilayer and multitasking road network data storage structure with object-oriented class definition. Then, the proposed path search algorithm is verified by using the real road network of Guangzhou city as an example. By the sensitive experiments, we make a comparative analysis of the proposed path search method with the current advanced optimal path algorithms. The results demonstrate that the proposed method can increase the road network search efficiency by more than 16% under different search proportion requests, node numbers, and computing process numbers, respectively. Therefore, this method is a great breakthrough in the guidance field of urban road network.


2021 ◽  
Vol 13 (9) ◽  
pp. 5108
Author(s):  
Navin Ranjan ◽  
Sovit Bhandari ◽  
Pervez Khan ◽  
Youn-Sik Hong ◽  
Hoon Kim

The transportation system, especially the road network, is the backbone of any modern economy. However, with rapid urbanization, the congestion level has surged drastically, causing a direct effect on the quality of urban life, the environment, and the economy. In this paper, we propose (i) an inexpensive and efficient Traffic Congestion Pattern Analysis algorithm based on Image Processing, which identifies the group of roads in a network that suffers from reoccurring congestion; (ii) deep neural network architecture, formed from Convolutional Autoencoder, which learns both spatial and temporal relationships from the sequence of image data to predict the city-wide grid congestion index. Our experiment shows that both algorithms are efficient because the pattern analysis is based on the basic operations of arithmetic, whereas the prediction algorithm outperforms two other deep neural networks (Convolutional Recurrent Autoencoder and ConvLSTM) in terms of large-scale traffic network prediction performance. A case study was conducted on the dataset from Seoul city.


2021 ◽  
Vol 11 (10) ◽  
pp. 4438
Author(s):  
Satyendra Singh ◽  
Manoj Fozdar ◽  
Hasmat Malik ◽  
Maria del Valle Fernández Moreno ◽  
Fausto Pedro García Márquez

It is expected that large-scale producers of wind energy will become dominant players in the future electricity market. However, wind power output is irregular in nature and it is subjected to numerous fluctuations. Due to the effect on the production of wind power, producing a detailed bidding strategy is becoming more complicated in the industry. Therefore, in view of these uncertainties, a competitive bidding approach in a pool-based day-ahead energy marketplace is formulated in this paper for traditional generation with wind power utilities. The profit of the generating utility is optimized by the modified gravitational search algorithm, and the Weibull distribution function is employed to represent the stochastic properties of wind speed profile. The method proposed is being investigated and simplified for the IEEE-30 and IEEE-57 frameworks. The results were compared with the results obtained with other optimization methods to validate the approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Carolina Lagos ◽  
Guillermo Guerrero ◽  
Enrique Cabrera ◽  
Stefanie Niklander ◽  
Franklin Johnson ◽  
...  

A novel matheuristic approach is presented and tested on a well-known optimisation problem, namely, capacitated facility location problem (CFLP). The algorithm combines local search and mathematical programming. While the local search algorithm is used to select a subset of promising facilities, mathematical programming strategies are used to solve the subproblem to optimality. Proposed local search is influenced by instance-specific information such as installation cost and the distance between customers and facilities. The algorithm is tested on large instances of the CFLP, where neither local search nor mathematical programming is able to find good quality solutions within acceptable computational times. Our approach is shown to be a very competitive alternative to solve large-scale instances for the CFLP.


2021 ◽  
pp. 0958305X2110148
Author(s):  
Mojtaba Shivaie ◽  
Mohammad Kiani-Moghaddam ◽  
Philip D Weinsier

In this study, a new bilateral equilibrium model was developed for the optimal bidding strategy of both price-taker generation companies (GenCos) and distribution companies (DisCos) that participate in a joint day-ahead energy and reserve electricity market. This model, from a new perspective, simultaneously takes into account such techno-economic-environmental measures as market power, security constraints, and environmental and loss considerations. The mathematical formulation of this new model, therefore, falls into a nonlinear, two-level optimization problem. The upper-level problem maximizes the quadratic profit functions of the GenCos and DisCos under incomplete information and passes the obtained optimal bidding strategies to the lower-level problem that clears a joint day-ahead energy and reserve electricity market. A locational marginal pricing mechanism was also considered for settling the electricity market. To solve this newly developed model, a competent multi-computational-stage, multi-dimensional, multiple-homogeneous enhanced melody search algorithm (MMM-EMSA), referred to as a symphony orchestra search algorithm (SOSA), was employed. Case studies using the IEEE 118-bus test system—a part of the American electrical power grid in the Midwestern U.S.—are provided in this paper in order to illustrate the effectiveness and capability of the model on a large-scale power grid. According to the simulation results, several conclusions can be drawn when comparing the unilateral bidding strategy: the competition among GenCos and DisCos facilitates; the improved performance of the electricity market; mitigation of the polluting atmospheric emission levels; and, the increase in total profits of the GenCos and DisCos.


2018 ◽  
Vol 7 (12) ◽  
pp. 472 ◽  
Author(s):  
Bo Wan ◽  
Lin Yang ◽  
Shunping Zhou ◽  
Run Wang ◽  
Dezhi Wang ◽  
...  

The road-network matching method is an effective tool for map integration, fusion, and update. Due to the complexity of road networks in the real world, matching methods often contain a series of complicated processes to identify homonymous roads and deal with their intricate relationship. However, traditional road-network matching algorithms, which are mainly central processing unit (CPU)-based approaches, may have performance bottleneck problems when facing big data. We developed a particle-swarm optimization (PSO)-based parallel road-network matching method on graphics-processing unit (GPU). Based on the characteristics of the two main stages (similarity computation and matching-relationship identification), data-partition and task-partition strategies were utilized, respectively, to fully use GPU threads. Experiments were conducted on datasets with 14 different scales. Results indicate that the parallel PSO-based matching algorithm (PSOM) could correctly identify most matching relationships with an average accuracy of 84.44%, which was at the same level as the accuracy of a benchmark—the probability-relaxation-matching (PRM) method. The PSOM approach significantly reduced the road-network matching time in dealing with large amounts of data in comparison with the PRM method. This paper provides a common parallel algorithm framework for road-network matching algorithms and contributes to integration and update of large-scale road-networks.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3586 ◽  
Author(s):  
Sizhou Sun ◽  
Jingqi Fu ◽  
Ang Li

Given the large-scale exploitation and utilization of wind power, the problems caused by the high stochastic and random characteristics of wind speed make researchers develop more reliable and precise wind power forecasting (WPF) models. To obtain better predicting accuracy, this study proposes a novel compound WPF strategy by optimal integration of four base forecasting engines. In the forecasting process, density-based spatial clustering of applications with noise (DBSCAN) is firstly employed to identify meaningful information and discard the abnormal wind power data. To eliminate the adverse influence of the missing data on the forecasting accuracy, Lagrange interpolation method is developed to get the corrected values of the missing points. Then, the two-stage decomposition (TSD) method including ensemble empirical mode decomposition (EEMD) and wavelet transform (WT) is utilized to preprocess the wind power data. In the decomposition process, the empirical wind power data are disassembled into different intrinsic mode functions (IMFs) and one residual (Res) by EEMD, and the highest frequent time series IMF1 is further broken into different components by WT. After determination of the input matrix by a partial autocorrelation function (PACF) and normalization into [0, 1], these decomposed components are used as the input variables of all the base forecasting engines, including least square support vector machine (LSSVM), wavelet neural networks (WNN), extreme learning machine (ELM) and autoregressive integrated moving average (ARIMA), to make the multistep WPF. To avoid local optima and improve the forecasting performance, the parameters in LSSVM, ELM, and WNN are tuned by backtracking search algorithm (BSA). On this basis, BSA algorithm is also employed to optimize the weighted coefficients of the individual forecasting results that produced by the four base forecasting engines to generate an ensemble of the forecasts. In the end, case studies for a certain wind farm in China are carried out to assess the proposed forecasting strategy.


Sign in / Sign up

Export Citation Format

Share Document