A new clustering algorithm based on a radar scanning strategy with applications to machine learning data

2021 ◽  
pp. 116143
Author(s):  
Lin Ma ◽  
Yi Zhang ◽  
Víctor Leiva ◽  
Shuangzhe Liu ◽  
Tiefeng Ma
2020 ◽  
Vol 15 ◽  
Author(s):  
Shuwen Zhang ◽  
Qiang Su ◽  
Qin Chen

Abstract: Major animal diseases pose a great threat to animal husbandry and human beings. With the deepening of globalization and the abundance of data resources, the prediction and analysis of animal diseases by using big data are becoming more and more important. The focus of machine learning is to make computers learn how to learn from data and use the learned experience to analyze and predict. Firstly, this paper introduces the animal epidemic situation and machine learning. Then it briefly introduces the application of machine learning in animal disease analysis and prediction. Machine learning is mainly divided into supervised learning and unsupervised learning. Supervised learning includes support vector machines, naive bayes, decision trees, random forests, logistic regression, artificial neural networks, deep learning, and AdaBoost. Unsupervised learning has maximum expectation algorithm, principal component analysis hierarchical clustering algorithm and maxent. Through the discussion of this paper, people have a clearer concept of machine learning and understand its application prospect in animal diseases.


2021 ◽  
Author(s):  
Olusegun Peter Awe ◽  
Daniel Adebowale Babatunde ◽  
Sangarapillai Lambotharan ◽  
Basil AsSadhan

AbstractWe address the problem of spectrum sensing in decentralized cognitive radio networks using a parametric machine learning method. In particular, to mitigate sensing performance degradation due to the mobility of the secondary users (SUs) in the presence of scatterers, we propose and investigate a classifier that uses a pilot based second order Kalman filter tracker for estimating the slowly varying channel gain between the primary user (PU) transmitter and the mobile SUs. Using the energy measurements at SU terminals as feature vectors, the algorithm is initialized by a K-means clustering algorithm with two centroids corresponding to the active and inactive status of PU transmitter. Under mobility, the centroid corresponding to the active PU status is adapted according to the estimates of the channels given by the Kalman filter and an adaptive K-means clustering technique is used to make classification decisions on the PU activity. Furthermore, to address the possibility that the SU receiver might experience location dependent co-channel interference, we have proposed a quadratic polynomial regression algorithm for estimating the noise plus interference power in the presence of mobility which can be used for adapting the centroid corresponding to inactive PU status. Simulation results demonstrate the efficacy of the proposed algorithm.


2020 ◽  
pp. 1-11
Author(s):  
Tang Yan ◽  
Li Pengfei

In marketing, problems such as the increase in customer data, the increase in the difficulty of data extraction and access, the lack of reliability and accuracy of data analysis, the slow efficiency of data processing, and the inability to effectively transform massive amounts of data into valuable information have become increasingly prominent. In order to study the effect of customer response, based on machine learning algorithms, this paper constructs a marketing customer response scoring model based on machine learning data analysis. In the context of supplier customer relationship management, this article analyzes the supplier’s precision marketing status and existing problems and uses its own development and management characteristics to improve marketing strategies. Moreover, this article uses a combination of database and statistical modeling and analysis to try to establish a customer response scoring model suitable for supplier precision marketing. In addition, this article conducts research and analysis with examples. From the research results, it can be seen that the performance of the model constructed in this article is good.


2020 ◽  
Vol 48 (2) ◽  
pp. 21-23
Author(s):  
Boudewijn R. Haverkort ◽  
Felix Finkbeiner ◽  
Pieter-Tjerk de Boer

2021 ◽  
Author(s):  
Tatiane Vieira Alves ◽  
Kamila Rios da Hora Rodrigues ◽  
Moacir Antonelli Ponti

Author(s):  
Manmohan Singh ◽  
Rajendra Pamula ◽  
Alok Kumar

There are various applications of clustering in the fields of machine learning, data mining, data compression along with pattern recognition. The existent techniques like the Llyods algorithm (sometimes called k-means) were affected by the issue of the algorithm which converges to a local optimum along with no approximation guarantee. For overcoming these shortcomings, an efficient k-means clustering approach is offered by this paper for stream data mining. Coreset is a popular and fundamental concept for k-means clustering in stream data. In each step, reduction determines a coreset of inputs, and represents the error, where P represents number of input points according to nested property of coreset. Hence, a bit reduction in error of final coreset gets n times more accurate. Therefore, this motivated the author to propose a new coreset-reduction algorithm. The proposed algorithm executed on the Covertype dataset, Spambase dataset, Census 1990 dataset, Bigcross dataset, and Tower dataset. Our algorithm outperforms with competitive algorithms like Streamkm[Formula: see text], BICO (BIRCH meets Coresets for k-means clustering), and BIRCH (Balance Iterative Reducing and Clustering using Hierarchies.


2018 ◽  
Vol 12 (2) ◽  
pp. 116 ◽  
Author(s):  
Amjad Hudaib ◽  
Mohammad Khanafseh ◽  
Ola Surakhi

Clustering is the process of grouping a set of patterns into different disjoint clusters where each cluster contains the alike patterns. Many algorithms had been proposed before for clustering. K-medoid is a variant of k-mean that use an actual point in the cluster to represent it instead of the mean in the k-mean algorithm to get the outliers and reduce noise in the cluster. In order to enhance performance of k-medoid algorithm and get more accurate clusters, a hybrid algorithm is proposed which use CRO algorithm along with k-medoid. In this method, CRO is used to expand searching for the optimal medoid and enhance clustering by getting more precise results. The performance of the new algorithm is evaluated by comparing its results with five clustering algorithms, k-mean, k-medoid, DB/rand/1/bin, CRO based clustering algorithm and hybrid CRO-k-mean by using four real world datasets: Lung cancer, Iris, Breast cancer Wisconsin and Haberman’s survival from UCI machine learning data repository. The results were conducted and compared base on different metrics and show that proposed algorithm enhanced clustering technique by giving more accurate results.


2020 ◽  
Author(s):  
Xiao Lai ◽  
Pu Tian

AbstractSupervised machine learning, especially deep learning based on a wide variety of neural network architectures, have contributed tremendously to fields such as marketing, computer vision and natural language processing. However, development of un-supervised machine learning algorithms has been a bottleneck of artificial intelligence. Clustering is a fundamental unsupervised task in many different subjects. Unfortunately, no present algorithm is satisfactory for clustering of high dimensional data with strong nonlinear correlations. In this work, we propose a simple and highly efficient hierarchical clustering algorithm based on encoding by composition rank vectors and tree structure, and demonstrate its utility with clustering of protein structural domains. No record comparison, which is an expensive and essential common step to all present clustering algorithms, is involved. Consequently, it achieves linear time and space computational complexity hierarchical clustering, thus applicable to arbitrarily large datasets. The key factor in this algorithm is definition of composition, which is dependent upon physical nature of target data and therefore need to be constructed case by case. Nonetheless, the algorithm is general and applicable to any high dimensional data with strong nonlinear correlations. We hope this algorithm to inspire a rich research field of encoding based clustering well beyond composition rank vector trees.


Sign in / Sign up

Export Citation Format

Share Document