scholarly journals Recycling the steel pickling waste liquor to produce a low-cost material for immobilization of heavy metal(loid)s

Author(s):  
Ling Zhang ◽  
Ran Li ◽  
Lei Zhou ◽  
Qiao Li ◽  
Fang Dong ◽  
...  
Keyword(s):  
Low Cost ◽  
Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1732
Author(s):  
Yuanyuan Yu ◽  
Yongjun Sun ◽  
Jun Zhou ◽  
Aowen Chen ◽  
Kinjal J. Shah

In this study, a high-efficiency magnetic heavy metal flocculant MF@AA was prepared based on carboxymethyl chitosan and magnetic Fe3O4. It was characterized by SEM, FTIR, XPS, XRD and VSM, and the Cu(II) removal rate was used as the evaluation basis for the preparation process. The effects of AMPS content, total monomer concentration, photoinitiator concentration and reaction time on the performance of MF@AA flocculation to remove Cu(II) were studied. The characterization results show that MF@AA has been successfully prepared and exhibits good magnetic induction characteristics. The synthesis results show that under the conditions of 10% AMPS content, 35% total monomer concentration, 0.04% photoinitiator concentration, and 1.5 h reaction time, the best yield of MF@AA is 77.69%. The best removal rate is 87.65%. In addition, the response surface optimization of the synthesis process of MF@AA was performed. The optimal synthesis ratio was finally determined as iron content 6.5%, CMFS: 29.5%, AM: 53.9%, AMPS: 10.1%. High-efficiency magnetic heavy metal flocculant MF@AA shows excellent flocculation performance in removing Cu(II). This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove Cu(II) in wastewater.


Author(s):  
Bingbing Qiu ◽  
Xuedong Tao ◽  
Hao Wang ◽  
Wenke Li ◽  
Xiang Ding ◽  
...  

2012 ◽  
Vol 12 (2/3/4) ◽  
pp. 318 ◽  
Author(s):  
Ali Ahmadpour ◽  
Tahereh Rohani Bastami ◽  
Masumeh Tahmasbi ◽  
Mohammad Zabihi

2017 ◽  
Vol 9 (6) ◽  
pp. 1031-1037 ◽  
Author(s):  
Jingtao Liu ◽  
Yu Ding ◽  
Lifei Ji ◽  
Xin Zhang ◽  
Fengchun Yang ◽  
...  

Hexavalent chromium (Cr(vi)) is one of the most toxic heavy metal pollutants in groundwater, and thus the detection of Cr(vi) with high sensitivity, accuracy, and simplicity and low cost is of great importance.


2014 ◽  
Vol 625 ◽  
pp. 889-892 ◽  
Author(s):  
Safoura Daneshfozoun ◽  
Bawadi Abdullah ◽  
Mohd Azmuddin Abdullah

This study developed an effective and economical physical pretreatment of OPEFB to be used as biosorbent for the removal of heavy metal ions such as Cu+2, Zn+2and Pb2+. The effects of fibres sizes, metal ions concentration (100-1000 ppm), initial pH (4-10) and contact time (20-150 min) were investigated in batch system. Samples were characterized with Atomic Absorption Spectrometry (AAS), Transmission Electron Microscopy (TEM) and Fourier Transmission Infra-red Spectroscopy (FTIR). Results showed pH-dependence adsorption efficiency and increased adsorption with initial metal concentrations where more than 92% adsorption efficiency achieved. We have successfully developed an eco-friendly, low cost adsorbent without any chemical modification or excessive energy disposal.


Author(s):  
Abimbola O. Aleshinloye ◽  
Kemayou Ngangsso ◽  
Feyisara B. Adaramola ◽  
Adebayo Onigbinde

This study investigated the potential of some agricultural wastes viz; African Star apple seed shell (ASS, plant source), crab shell (CS, animal source) and chicken egg shell (ES, animal source) as eco-friendly and low-cost biological materials for the removal of heavy metals from poultry wastewater. TS, TSS and TDS of the wastewater sample were assayed by filtration methods, chloride content by previously reported method and heavy metal contents (Zn, V, Cd, Fe, Ni, Cu, Co, Pb, Cr and Mn); were analyzed using Microwave Plasma Atomic Emission Spectrometer. The results of the solids and chloride contents of the poultry wastewater were TDS (3100 mg/L), TS (3700 mg/L), TSS (6000 mg/L) and chloride (4.7 g/L); all above the EPA permissible limits. Results of the FTIR analysis showed that ASS is an amide polymer while the CS and ES shells are mixtures of amide and carbonate polymers. Also, results of heavy metal analysis before and after adsorption showed that ASS caused removal of Zn, V, Fe, Cu, Co/ Pb and Mn by 48.27, 32.22, 49.64, 91.44, 100 and 82.39% respectively while Cd, Ni and Cr contents increased by 31, 61 and 48.3% respectively. CS showed removal of Fe, Ni/ Co/ Cr, Pb and Mn by 89.64, 100, 3.51 and 95.96% respectively while Zn, V, Cd and Cu contents increased by 1.7, 61.2, 76.1 and 68.1% respectively. Meanwhile, with ES, the contents of Zn, Fe, Ni, Cu, Cr and Mn increased by 31.56, 86.36, 100, 55.5, 45.80 and 90.33% respectively while the contents of V, Cd, Co and Pb decreased by 78.9, 86.7, 42.5 and 46.2% respectively. This study demonstrated the use of ASS, CS and ES as low- cost and eco-friendly agricultural wastes with significant potential for removal of heavy metals from wastewaters.


2016 ◽  
Vol 7 (4) ◽  
pp. 387-419 ◽  
Author(s):  
Renu ◽  
Madhu Agarwal ◽  
K. Singh

Heavy metals are discharged into water from various industries. They can be toxic or carcinogenic in nature and can cause severe problems for humans and aquatic ecosystems. Thus, the removal of heavy metals from wastewater is a serious problem. The adsorption process is widely used for the removal of heavy metals from wastewater because of its low cost, availability and eco-friendly nature. Both commercial adsorbents and bioadsorbents are used for the removal of heavy metals from wastewater, with high removal capacity. This review article aims to compile scattered information on the different adsorbents that are used for heavy metal removal and to provide information on the commercially available and natural bioadsorbents used for removal of chromium, cadmium and copper, in particular.


Sign in / Sign up

Export Citation Format

Share Document