Phase morphology, crystallisation behaviour and mechanical properties of isotactic polypropylene/high density polyethylene blends

2004 ◽  
Vol 40 (9) ◽  
pp. 2105-2115 ◽  
Author(s):  
S Jose ◽  
A.S Aprem ◽  
B Francis ◽  
M.C Chandy ◽  
P Werner ◽  
...  
2012 ◽  
Vol 729 ◽  
pp. 216-221 ◽  
Author(s):  
Hajnalka Hargitai ◽  
Tamás Ibriksz ◽  
János Stifter ◽  
Endre Andersen

In our experiments polyamide 6/high density polyethylene blends (25/75 wt%) were produced and maleic anhydride grafted polyethylene was used as chemical coupling agent. To get finer microstructure and enhance the mechanical properties the blends were compounded by different nanostructured reinforcements. Two kinds of nanosilicate, the layered structure montmorillonite and the needle like sepiolite were applied in different concentrations and their effect on the mechanical and melting properties were examined.


2019 ◽  
Vol 35 (3) ◽  
pp. 117-137
Author(s):  
Yongjun Liu ◽  
Ming Zhong ◽  
Gang Liu ◽  
Shouzhi Pu

Recycled poly(ethylene terephthalate) (R-PET)/high-density polyethylene (HDPE)/glycidyl methacrylate grafted poly(ethylene-octene) (mPOE) blends, in which the binary (HDPE/mPOE) dispersed phase was of a HDPE core-mPOE shell structure, were prepared. For this purpose, HDPE-g-mPOE graft copolymers were prepared in HDPE/mPOE blends via reactive extrusion with the presence of the free radical initiator dicumyl peroxide (DCP). Then, R-PET was blended with the HDPE/mPOE blends by melt extrusion. The effect of the DCP and mPOE content in the HDPE/mPOE blends on the phase morphology and mechanical properties of the R-PET/HDPE/mPOE blends were studied systematically. It was found that the blends containing reactive compatibilizer exhibited the encapsulation of the HDPE by the mPOE, forming core–shell particles dispersed phase morphology. The graft chains of HDPE-g-mPOE-g-PET formed by the in situ reaction between R-PET and mPOE phases reduced the interfacial tension. Consequently, the dispersed phase morphology was observed to form smaller diameter core–shell particles. The resultant blends exhibited an effect on both the thermal and mechanical properties. Differential scanning calorimetric analysis showed the dispersed phase particles could act as a nucleating agent in the R-PET matrix to improve the crystallization temperature, while the graft copolymers formed in the compatibilized R-PET/HDPE/mPOE blend decreased the nucleation activity. Notched Charpy impact strength and elongation at break of the R-PET were improved by forming the core–shell particles dispersed phase morphology.


Sign in / Sign up

Export Citation Format

Share Document