Experimental investigations on decay heat removal in advanced nuclear reactors using single heater rod test facility: Air alone in the annular gap

2010 ◽  
Vol 34 (8) ◽  
pp. 1456-1474 ◽  
Author(s):  
Santosh B. Bopche ◽  
Arunkumar Sridharan
Author(s):  
Wolfgang Flaig ◽  
Rainer Mertz ◽  
Joerg Starflinger

Supercritical fluids show great potential as future coolants for nuclear reactors, thermal power, and solar power plants. Compared to the subcritical condition, supercritical fluids show advantages in heat transfer due to thermodynamic properties near the critical point. A specific field of interest is an innovative decay heat removal system for nuclear power plants, which is based on a turbine-compressor system with supercritical CO2 as the working fluid. In case of a severe accident, this system converts the decay heat into excess electricity and low-temperature waste heat, which can be emitted to the ambient air. To guarantee the retrofitting of this decay heat removal system into existing nuclear power plants, the heat exchanger (HE) needs to be as compact and efficient as possible. Therefore, a diffusion-bonded plate heat exchanger (DBHE) with mini channels was developed and manufactured. This DBHE was tested to gain data of the transferable heat power and the pressure loss. A multipurpose facility has been built at Institut für Kernenergetik und Energiesysteme (IKE) for various experimental investigations on supercritical CO2, which is in operation now. It consists of a closed loop where the CO2 is compressed to supercritical state and delivered to a test section in which the experiments are run. The test facility is designed to carry out experimental investigations with CO2 mass flows up to 0.111 kg/s, pressures up to 12 MPa, and temperatures up to 150 °C. This paper describes the development and setup of the facility as well as the first experimental investigation.


Author(s):  
Tim Cloppenborg ◽  
Christoph Schuster ◽  
Antonio Hurtado

Passive systems like natural circulation (NC) loops can offer reliable and cost efficient alternatives to common active systems for decay heat removal in nuclear power plants. During the transition between stable single and stable two phase flows, instabilities e. g. flashing and geysering may occur in the riser due to low system pressure and saturation temperature conditions. These instabilities may cause severe stress to the system components. This paper presented some results of the study on the decay heat removal system based on natural circulation, performed on the open loop NC test facility GENEVA, built at TU Dresden in 2013. 16 probes were used to determine void fraction along the riser on nine different levels in high time and spatial resolution, and stability maps was created for riser with inner diameters of 20 mm and 38 mm and up to 85 kW evaporator power.


Author(s):  
Wolfgang Flaig ◽  
Rainer Mertz ◽  
Jörg Starflinger

Supercritical fluids show great potential as future coolants for nuclear reactors, thermal power and solar power plants. Compared to the subcritical condition, supercritical fluids show advantages in heat transfer due to thermodynamic properties near the critical point. This can lead to the development of more compact and more efficient components, e.g. heat exchanger and compressors. A specific field of interest is a new decay heat removal system for nuclear power plants which is based on a turbine-compressor-system with supercritical CO2 as the working fluid. In case of a station blackout this system converts the decay heat into excess electricity and low-temperature waste heat, which can be emitted to the ambient air. This scenario has already been investigated by means of the thermo-hydraulic code ATHLET, numerically demonstrating the operation of this system for more than 72 h. The practical demonstration is carried out within the Project “sCO2-HeRo”, funded by the European Commission, in which a small scale demonstration unit of the turbo compressor shall be installed at the PWR glass model at GfS, Essen, Germany. To guarantee the retrofitting of this decay heat removal system into existing nuclear power plants, the heat exchanger needs to be as compact and efficient as possible. Therefore, a diffusion welded plate heat exchanger (DWHE) was developed and manufactured at IKE. It has been designed with rectangular mini-channels (0.5–3 mm hydraulic diameter) to ensure high compactness and high heat transfer coefficients. Due to uncertainties the DWHE has to be tested in regard to the actual possible transferrable heat power and to the pressure loss. According to this demand a multipurpose facility has been built at IKE for various experimental investigations on supercritical CO2, which is in operation now. It consists of a closed loop where the CO2 is compressed to supercritical state and delivered to the test section. The test section itself can be exchanged by other ones for various investigations. After the test section, the CO2 pressure is reduced and the liquid is stored in storage tanks, from where it is evaporated and compressed again. The test facility is designed to carry out experimental investigations with CO2 mass flows up to 0.111 kg/s, pressures up to 12 MPa and temperatures up to 150 °C. The first subject of interest will be the study of the thermal behavior of a DWHE using supercritical CO2 as a working fluid close to its critical point. Experiments concerning pressure loss and heat transfer will be carried out as a start for fundamental investigation of heat transfer in mini-channels. This paper contains a detailed description of the test facility, of the first test section and first results regarding heat transfer power and pressure loss.


Author(s):  
Seong Kuk Cho ◽  
Jekyoung Lee ◽  
Jeong Ik Lee ◽  
Jae Eun Cha

A Sodium-cooled Fast Reactor (SFR) has receiving attention as one of the promising next generation nuclear reactors because it can recycle the spent nuclear fuel produced from the current commercial nuclear reactors and accomplish higher thermal efficiency than the current commercial nuclear reactors. However, after shutdown of the nuclear reactor core, the accumulated fission products of the SFR also decay and release heat via radiation within the reactor. To remove this residual heat, a decay heat removal system (DHRS) with supercritical CO2 (S-CO2) as the working fluid is suggested with a turbocharger system which achieves passive operational capability. However, for designing this system an improved S-CO2 turbine design methodology should be suggested because the existing methodology for designing the S-CO2 Brayton cycle has focused only on the compressor design near the critical point. To develop a S-CO2 turbine design methodology, the non-dimensional number based design and the 1D mean line design method were modified and suggested. The design methodology was implemented into the developed code and the code results were compared with existing turbine experimental data. The data were collected under air and S-CO2 environment. The developed code in this research showed a reasonable agreement with the experimental data. Finally using the design code, the turbocharger design for the suggested DHRS and prediction of the off design performance were carried out. As further works, more effort will be put it to expand the S-CO2 turbine test data for validating the design code and methodology.


Author(s):  
Yang Liu ◽  
Haijun Jia ◽  
Li Weihua

Passive decay heat removal (PDHR) system is important to the safety of integral pressurized water reactor (IPWR). In small break LOCA sequence, the depressurization of the reactor pressure vessel (RPV) is achieved by the PDHR that remove the decay heat by condensing steam directly through the SGs inside the RPV at high pressure. The non-condensable gases in the RPV significantly weaken the heat transfer capability of PDHR. This paper focus on the non-condensable gas effects in passive decay heat removal system at high pressure. A series of experiments are conducted in the Institute of Nuclear and New Energy Technology test facility with various heating power and non-condensable gas volume ratio. The results are significant to the optimizing design of the PDHR and the safety operation of the IPWR.


Author(s):  
Andrea Bersano ◽  
Mario De Salve ◽  
Cristina Bertani ◽  
Nicolò Falcone ◽  
Bruno Panella

Within the field of research and development of innovative nuclear reactors, in particular Generation IV reactors and Small Modular Reactors (SMR), the design and the improvement of safety systems play a crucial role. Among all the safety systems high attention is dedicated to passive systems that do not need external energy to operate, with a very high reliability also in the case of station blackout, and which are largely used in evolutionary technology reactors. The aim of this work is the experimental and numerical analysis of a passive system that operates in natural circulation in order to study the mechanism and the efficiency of heat removal. The final goal is the development of a methodology that can be used to study this class of systems and to assess the thermal-hydraulic code RELAP5 for these specific applications. Starting from a commercial size system, which is the decay heat removal system of the experimental lead cooled reactor ALFRED, an experimental facility has been designed, built and tested with the aim of studying natural circulation in passive systems for nuclear applications. The facility has been simulated and optimized using the thermal-hydraulic code RELAP5-3D. During the experimental tests, temperatures and pressures are measured and the experimental results are compared with the ones predicted by the code. The results show that the system operates effectively, removing the given thermal power. The code can predict well the experimental results but high attention must be dedicated to the modeling of components where non-condensable gases are present (condenser pool and surrounding ambient). This facility will be also used to validate the scaling laws among systems that operate in natural circulation.


Author(s):  
T. Gocht ◽  
W. Kästner ◽  
A. Kratzsch ◽  
M. Strasser

In case of an accident the safe heat removal from the reactor core with the installed emergency core cooling system (ECCS) is one of the main features in reactor safety. During a loss-of-coolant accident (LOCA) the release of insulation material fragments in the reactor containment can lead to malfunctions of ECCS. Therefore, the retention of particles by strainers or filtering systems in the ECCS is one of the major tasks. The aim of the presented experimental investigations was the evaluation of a filtering system for the retention of fiber-shaped particles in a fluid flow. The filtering system consists of a filter case with a special lamellar filter unit. The tests were carried out at a test facility with filtering units of different mesh sizes. Insulation material (mineral rock wool) was fragmented to fiber-shaped particles. To simulate the distribution of particle concentration at real plants with large volumes the material was divided into single portions and introduced into the loop with a defined time interval. Material was transported to the filter by the fluid and agglomerated there. The assessment of functionality of the filtering system was made by differential pressure between inlet and outlet of the filtering system and by mass of penetrated particles. It can be concluded that for the tested filtering system no penetration of insulation particles occurred.


Author(s):  
S. P. Pathak ◽  
V. A. Suresh Kumar ◽  
I. B. Noushad ◽  
K. K. Rajan ◽  
K. Velusamy ◽  
...  

Sodium to air heat exchangers (AHX) with finned tubes is used in fast breeder reactors for decay heat removal. The aim of decay heat removal is to maintain the fuel, clad, coolant, and structural temperatures within safety limits. To investigate the thermal hydraulic features of AHX, a robust porous body based computational fluid dynamics (CFD) model has been developed and validated against the experimental data obtained from a model AHX of 2 MW capacity in Steam Generator Test Facility at the Indira Gandhi Centre for Atomic Research, Kalpakkam. In the present paper, the developed porous body model is used to study the sodium and air temperature distribution and the influence of various parameters that affect the heat removal rate and sodium outlet temperature in full-size AHX used in the fast breeder reactors. The parameters include mass flow rates and inlet temperatures of sodium and air. The focus of the study has been to identify conditions that can pose the risk of sodium freezing.


2010 ◽  
Vol 654-656 ◽  
pp. 416-419
Author(s):  
Hyeong Yeon Lee ◽  
Jae Han Lee ◽  
Tae Ho Lee ◽  
Jae Hyuk Eoh Lee ◽  
Tae Joon Kim ◽  
...  

A large scale sodium test facility of ‘CPTL’(Component Performance Test Loop) for simulating thermal hydraulic behavior of the Korean demonstration fast reactor components such as IHX(Intermediate Heat Exchanger), DHX(Decay Heat Removal Heat Exchanger) and sodium pump under development by KAERI is to be constructed. The design temperature of this test loop is 600°C and design pressure is 1MPa. The three heat exchangers are made of Grade 91 steel. Another sodium test facility of the ‘STEF’(Sodium Thermal-Hydraulic Experimental Facility) will be constructed next to the CPTL facility to simulate the passive decay heat removal behavior in the sodium cooled fast reactor. In this paper, the overall facility features of the CPTL and STEF are introduced and preliminary conceptual design of the facilities are carried out.


2018 ◽  
Vol 168 ◽  
pp. 07007
Author(s):  
František Világi ◽  
Branislav Knížat ◽  
Marek Mlkvik ◽  
František Urban ◽  
Róbert Olšiak ◽  
...  

The natural circulation helium loop is a facility designed for decay heat removal from ALLEGRO fast nuclear reactors. The article deals with the observation of pressure and velocity relations during steady flow of helium. A one-dimensional numerical model of flow capable of determining the velocity with sufficient accuracy is presented in the article. The model describes the flow of highly compressed gaseous medium with variable density in direct pipelines with local resistances. It’s a hydraulic model, which means that the temperature distribution along the loop must be known. The article also includes the evaluation of local resistances in DHR and GFR, which significantly affects the resulting accuracy. The results from numerical model are compared with experiments.


Sign in / Sign up

Export Citation Format

Share Document