High-Accuracy Wet-Gas Multiphase Well Testing and Production Metering

SPE Journal ◽  
2006 ◽  
Vol 11 (02) ◽  
pp. 199-205 ◽  
Author(s):  
David I. Atkinson ◽  
Oyvind Reksten ◽  
Gerald Smith ◽  
Helge Moe

Summary Dedicated wet-gas flowmeters are now commercially available for the measurement of gas and liquid flow rates and offer a more compact measurement solution than does the traditional separator approach. The interpretation models of traditional multiphase flowmeters emphasize the liquid rate measurements and have been used to well test and meter mostly liquid-rich flow streams. These models were not developed for the measurement of gas flow rates, particularly those of wet gas. A new interpretation is described that allows a traditional multiphase flowmeter to operate in a dual mode either as a multiphase meter or as a wet-gas meter in 90 to 100% gas. The new interpretation model was developed for a commercially available multiphase flowmeter consisting of a venturi and a dual-energy composition meter. This combination results in excellent predictions of the gas flow rate; the liquid rate prediction is made with acceptable accuracy and no additional measurements. The wet gas and low-liquid-volume-fraction interpretation model is described together with the multiphase flowmeter. Examples of applying this model to data collected on flow loops are presented, with comparison to reference flow rates. The data from the Sintef and NEL flow loops show an error (including the reference meter error) in the gas flow rate, better than ± 2% reading (95% confidence interval), at line conditions; the absolute error (including the reference meter error) in the measured total liquid flow rate at line conditions was better than ± 2 m3/h (< ± 300 B/D: 95% confidence interval). This new interpretation model offers a significant advance in the metering of wet-gas multiphase flows and yields the possibility of high accuracies to meet the needs of gas-well testing and production allocation applications without the use of separators. Introduction There has been considerable focus in recent years on the development of new flow-measurement techniques for application to surface well testing and flow-measurement allocation in multiphase conditions without separating the phases. This has resulted in new technology from the industry for both gas and oil production. Today, there are wet-gas flowmeters, dedicated to the metering of wet-gas flows, and multiphase meters, for the metering of multiphase liquid flows. The common approach to wet-gas measurement relates gas and liquid flows to a "pseudo-gas flow rate" calculated from the standard single-phase equations. This addresses the need for gas measurement in the presence of liquids and can be applied to a limit of liquid flow [or gas volume fraction, (GVF)], though the accuracy of this approach decreases with decreasing GVF. The accurate determination of liquid rates by wet-gas meters is restricted in range. The application and performance of multiphase meters has been well documented through technical papers and industry forums, and after several years of development is maturing (Scheers 2004). Some multiphase measurement techniques can perform better, and the meters provide a more compact solution, than the traditional separation approach. It is not surprising that the use of multiphase flowmeters has grown significantly, the worldwide number doubling in little over a 2-year period (Mehdizadeh et al. 2002). Multiphase-flowmeter interpretation emphasizes the liquid rate measurement, and the application of multiphase flowmeters has been predominantly for liquid-rich flow stream allocation and well testing.

2021 ◽  
Author(s):  
Serhii Matkivskyi ◽  
Liliia Khaidarova

The overwhelming majority of natural gas fields are at the final stage of development, which, along with other features, is characterized by selective watering of productive deposits and production wells. The difficulty of extracting residual gas reserves under such development conditions is associated with depletion of productive reservoirs, accumulation of fluid at the bottom of wells, corrosion of downhole equipment and the inability to reduce wellhead pressures due to restrictions on the supply and preparation of hydrocarbon products with the existing surface infrastructure. Production wells in conditions of formation water inflow into productive deposits are decommissioned after relatively small gas withdrawals. This is due both to the insufficient implementation of methods for intensifying the removal of fluid from the bottom of the wells, and to the peculiarities of the arrangement of fields, which are usually not designed for the collection and preparation of hydrocarbon products with a high liquid content. In order to remove the gas-liquid mixture from the bottom of the wells, many techniques and inventions have been developed that are widely used in production. The developed technologies are characterized by different efficiency and have a number of technological limitations, mainly due to the peculiarities of the geological structure of hydrocarbon deposits. Considering the above, there is a need for additional research in order to improve the existing and develop new technologies for the operation of water cut wells. Using the special software package, studies were carried out to optimize the operating conditions for a water cut well under conditions of active formation water inflow into gas-saturated horizons. The study was carried out for various depths of gas-lift valves (3500 m; 3000 m; 2500 m; 2000 m; 1500 m; 1000 m) and liquid flow rates (22.5 m3/day; 33.75 m3/day and 45 m3/day). Based on the research results, graphical dependences of gas flow rates and bottomhole pressure on the amount of gas-lift gas were built; the maximum gas flow rate and the required amount of gas-lift gas from the liquid flow rate; maximum gas flow rate versus liquid flow rate at different depths of gas-lift valve installation. Based on the results of statistical processing of the calculated data for each value of the liquid flow rate, the optimal value of the depth of the gas-lift valve was established. According to the results of the studies performed, to ensure the stable operation of high-water cut gas wells, it is effective to locate the gas-lift valve at a distance of 55-58 % from the wellhead of the tubing (2033-2137 m).


2021 ◽  
pp. 13-19
Author(s):  
Zhanat А. Dayev ◽  
Gulzhan E. Shopanova ◽  
Bakytgul А. Toksanbaeva

The article deals with one of the important tasks of modern flow measurement, which is related to the measurement of the flow rate and the amount of wet gas. This task becomes especially important when it becomes necessary to obtain information about the separate amount of the dry part of the gas that is contained in the form of a mixture in the wet gas stream. The paper presents the principle of operation and structure of the invariant system for measuring the flow rate of wet gas, which is based on the combined use of differential pressure flowmeters and Coriolis flowmeters. The operation of the invariant wet gas flow rate measurement system is based on the simultaneous application of the multichannel principle and the partial flow measurement method. Coriolis flowmeters and the differential pressure flowmeter are used as the main elements of the system. The proposed measurement system does not offer applications for gases with abundant drip humidity. The article provides information about the test results of the proposed invariant system. The estimation of the metrological characteristics of the invariant system when measuring the flow rate of wet gas is given. The obtained test results of the invariant wet gas flow rate measurement system are relevant for natural gas production, transportation, and storage facilities.


Konversi ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Erlinda Ningsih ◽  
Abas Sato ◽  
Mochammad Alfan Nafiuddin ◽  
Wisnu Setyo Putranto

Abstract- One of the most widely used processes for CO2 gas removal is Absorption. Carbon dioxide is the result of the fuel combustion process which of the hazardous gases. The aim of this research is to determine the total mass transfer coefficient and analyze the effect of the absorbent flow rate of the absorbent solution with the promoter and the gas flow rate to the total mass transfer coefficient value. The variables consisted of liquid flow rate: 1, 2, 3, 4, 5 liter/min, gas flow rate: 15, 25, 30, 40, 50 liter/min and MSG concentration: 0%, 1%, 3% and 5% by weight. The solution of Pottasium Carbonate as absorbent with MSG promoter is flowed through top column and CO2 gas flowed from bottom packed column. Liquids were analyzed by titration and the gas output was analyzed by GC. From this research, it is found that the flow rate of gas and the liquid flow rate is directly proportional to the value of KGa. The liquid flow rate variable 5 liters / minute, gas flow rate 15 l / min obtained value of KGa 11,1102 at concentration of MSG 5%. Keywords:  Absorption, CO2,  K2CO3, MSG. 


2020 ◽  
Vol 10 (13) ◽  
pp. 4617
Author(s):  
Adel Almoslh ◽  
Falah Alobaid ◽  
Christian Heinze ◽  
Bernd Epple

The influence of pressure on the gas/liquid interfacial area is investigated in the pressure range of 0.2–0.3 MPa by using a tray column test rig. A simulated waste gas, which consisted of 30% CO2 and 70% air, was used in this study. Distilled water was employed as an absorbent. The temperature of the inlet water was 19 °C. The inlet volumetric flow rate of water was 0.17 m3/h. Two series of experiments were performed; the first series was performed at inlet gas flow rate 15 Nm3/h, whereas the second series was at 20 Nm3/h of inlet gas flow rate. The results showed that the gas/liquid interfacial area decreases when the total pressure is increased. The effect of pressure on the gas/liquid interfacial area at high inlet volumetric gas flow rates is more significant than at low inlet volumetric gas flow rates. The authors studied the effect of decreasing the interfacial area on the performance of a tray column for CO2 capture.


2020 ◽  
Vol 842 ◽  
pp. 279-284
Author(s):  
Zhong Ren ◽  
Xing Yuan Huang

During the manufacture of plastic micro-pipe, a certain volume of gas should be properly injected into the inner cavity to overcome the collapse and adhesion problems. In this work, the extrusion forming of plastic micro-tube under the role of inner cavity’s gas were numerically studied. At the same time, the effect of inner cavity’s gas flow rate on the extrusion deformation of plastic micro-pipe was also numerically investigated by using the finite element method. A kind of 2D two-phase fluid geometric model and finite element mesh were established and some reasonable boundary conditions and material parameters were imposed. Under a fixed volume flow rate of melt, different flow rates of inner cavity gas were imposed on the inlet of inner cavity’s gas. The extrusion deformation profile and deformation ratio of plastic micro-pipe under different flow rates of gas were all obtained. To ascertain the mechanisms of effect of inner cavity’s gas flow rate on the extrusion deformation of plastic micro-tube, the flow velocities, pressure, shear rate, normal stress, and the first normal stress difference of melt all obtained and analyzed. Numerical results show that with the increase of inner cavity’s gas flow rate, the radial velocity, axial velocity, pressure, shear rate, normal stress, and the first normal stress difference of melt all increase, which makes the extrusion deformation become more and more serious. In practice, reasonable controlling of the inner cavity’s gas flow rate is very important. In the other hand, it can adjust the size of extruded plastic micro-pipe.


1994 ◽  
Vol 29 (10-11) ◽  
pp. 231-241 ◽  
Author(s):  
H. T. Chang ◽  
B. E. Rittmann

This paper presents a unified model that inter-relates gas flow rate, liquid flow rate, and hold-ups of each of the liquid, gas, and solid phases in three-phase, fluidized-bed biofilm (TPFBB) process. It describes how carrier properties, biofilm properties, and gas and liquid flow velocities control the system dynamics, which ultimately will affect the density, thickness, and distribution of the biofilm. The paper describes the development of the mathematical model to correlate the effects of gas flow rate, liquid flow rate, solid concentration, and biofilm thickness and density. This knowledge is critically needed in light of the use of TPFBB processes in treating industrial wastewater, which often has high substrate concentration. For example, the proper design of the TPFBB process requires mathematical description of the cause-effect relationship between biofilm growth and fluidization.


Author(s):  
A. Chukwujekwu Okafor ◽  
Hector-Martins Mogbo

In this paper, the effects of gas flow rates, and catalyst loading on polymer electrolyte membrane fuel cell (PEMFC) performance was investigated using a 50cm2 active area fuel cell fixture with serpentine flow field channels machined into poco graphite blocks. Membrane Electrode Assemblies (MEAs) with catalyst and gas flow rates at two levels each (0.5mg/cm2, 1mg/cm2; 0.3L/min, 0.5L/min respectively) were tested at 60°C without humidification. The cell performance was analyzed by taking AC Impedance, TAFEL plot, open circuit voltage, and area specific resistance measurements. It was observed that MEAs with lower gas flow rate had lesser cell resistance compared to MEAs with a higher gas flow rate. TAFEL plot shows the highest exchange current density value of −2.05 mAcm2 for MEA with 0.5mg/cm2 catalyst loading operated at reactant gas flow rate of 0.3L/min signifying it had the least activation loss and fastest reaction rate. Open circuit voltage curve shows a higher output voltage and lesser voltage decay rate for MEAs tested at higher gas flow rates.


2011 ◽  
Vol 383-390 ◽  
pp. 4922-4927
Author(s):  
Peng Xia Xu ◽  
Yan Feng Geng

Wet gas flow is a typical two-phase flow with low liquid fractions. As differential pressure signal contains rich information of flow parameters in two-phase flow metering, a new method is proposed for wet gas flow metering based on differential pressure (DP) and blind source separation (BSS) techniques. DP signals are from a couple of slotted orifices and the BSS method is based on time-frequency analysis. A good relationship between the liquid flow rate and the characteristic quantity of the separated signal is established, and a differential pressure correlation for slotted orifice is applied to calculate the gas flow rate. The calculation results are good with 90% relative errors less than ±10%. The results also show that BSS is an effective method to extract liquid flow rate from DP signals of wet gas flow, and to analysis different interactions among the total DP readings.


2014 ◽  
Vol 1016 ◽  
pp. 177-182 ◽  
Author(s):  
Mutiu F. Erinosho ◽  
Esther Titilayo Akinlabi ◽  
Sisa Pityana

—Pure copper was deposited with Ti6Al4V alloy via laser metal deposition (LMD) process to produce Ti6Al4V/Cu composites. This paper reports the effect of powder flow rate (PFR) and gas flow rate (GFR) of laser metal deposited Ti6Al4V/Cu composites. The deposited samples were characterised through the evolving microstructure and microhardness. It was observed that the PFR and GFR have an influence on the percentage of porosity present in the samples. The higher the flow rates of the powder and the gas, the higher the degree of porosity and vice versa. The widmanstettan structures were observed to be finer as the flow rate reduces which in turn causes a decrease in the hardness values of the deposited composites. The hardness values varied between HV381.3 ± 60 and HV447.3 ± 49.


2012 ◽  
Vol 433-440 ◽  
pp. 221-226
Author(s):  
Lan Chen ◽  
Yu Heng Quan

The effect of gas flow rate on degradation of chlorinated phenoxy acetic acids herbicide 2,4-D(2,4-dichlorophenoxyacetic acid) in aqueous solution with O3 or O 3/H 2O2 process was investigated in a bubbling semi-batch reactor. The experiments were conducted to study the degradation rate constant, mass transfer condition, ozone consumption and formation of byproduct hydrogen peroxide at different gas flow rates. The results show that gas flow rate is a complicated parameter in the process. The contact time of gas and liquid phase varies with different gas flow rate, consequently ozone mass transfer condition changes with different gas flow rates. The production rate of ozone, amount of ozone in the end gas and ozone consumption during the degradation with ozonation and O 3/H2O2 process vary with different of gas flow rates. Hydrogen peroxide is a byproduct during the ozonation or O3/H2O2 process of 2,4-D. The production rate of hydrogen peroxide is also affected by the gas flow rate. In general gas flow rate has both positive and negative effect on the 2,4-D degradation.


Sign in / Sign up

Export Citation Format

Share Document