Drought tolerance improvement in crop plants: An integrated view from breeding to genomics

2008 ◽  
Vol 105 (1-2) ◽  
pp. 1-14 ◽  
Author(s):  
Luigi Cattivelli ◽  
Fulvia Rizza ◽  
Franz-W. Badeck ◽  
Elisabetta Mazzucotelli ◽  
Anna M. Mastrangelo ◽  
...  
2020 ◽  
Vol 21 (21) ◽  
pp. 8258 ◽  
Author(s):  
Vishvanathan Marthandan ◽  
Rathnavel Geetha ◽  
Karunanandham Kumutha ◽  
Vellaichamy Gandhimeyyan Renganathan ◽  
Adhimoolam Karthikeyan ◽  
...  

Drought is a serious threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. Drought adversely affects seed germination, plant growth, and development via non-normal physiological processes. Plants generally acclimatize to drought stress through various tolerance mechanisms, but the changes in global climate and modern agricultural systems have further worsened the crop productivity. In order to increase the production and productivity, several strategies such as the breeding of tolerant varieties and exogenous application of growth regulators, osmoprotectants, and plant mineral nutrients are followed to mitigate the effects of drought stress. Nevertheless, the complex nature of drought stress makes these strategies ineffective in benefiting the farming community. Seed priming is an alternative, low-cost, and feasible technique, which can improve drought stress tolerance through enhanced and advanced seed germination. Primed seeds can retain the memory of previous stress and enable protection against oxidative stress through earlier activation of the cellular defense mechanism, reduced imbibition time, upsurge of germination promoters, and osmotic regulation. However, a better understanding of the metabolic events during the priming treatment is needed to use this technology in a more efficient way. Interestingly, the review highlights the morphological, physiological, biochemical, and molecular responses of seed priming for enhancing the drought tolerance in crop plants. Furthermore, the challenges and opportunities associated with various priming methods are also addressed side-by-side to enable the use of this simple and cost-efficient technique in a more efficient manner.


2021 ◽  
Vol 19 (4) ◽  
pp. 363-374
Author(s):  
Majid Mohammadi ◽  
Aghafakhr Mirlohi ◽  
Mohammad Mahdi Majidi ◽  
Ali Rabbani

AbstractEmmer wheat (Triticum turgidum ssp. dicoccum) is one of the most promising gene sources for drought tolerance improvement of durum wheat (Triticum turgidum ssp. durum). Achieving desired results requires a conscious choice of crossing parents based on general and specific combining ability (GCA and SCA) and also understanding the genes action involved in controlling the desired traits. In this study a 12 × 12 full diallel cross was performed using four emmer and eight durum wheats. The 132 hybrid progenies along with their parental lines were field evaluated under water-stressed and non-stressed conditions. Based on the Griffing diallel analysis both GCA and SCA effects were highly significant for all measured traits under both water treatments indicating possibility of improvement for drought tolerance. In this respect, the amount of additive effect was higher than the non-additive suggesting the chance for genetic advancement through selection. Based on Hayman's graphical analyses under the two water conditions it was revealed that several grain yield component traits were under the control of partial dominance. In contrary, grain yield and most morphological traits showed either dominance or over-dominance gene action. Grain yield had a significant positive correlation with the number of kernels per spike, kernel diameter, grain weight per spike and harvest index. These traits also had greater share of additive effects, relatively high narrow-sense heritability and high Baker ratio suggesting effective indirect selection for grain yield. Most durum × emmer hybrids had grain yield and drought tolerance indices better than the parents indicating that Iranian emmer wheats have a great genetic potential for drought tolerance improvement of durum wheat.


Crop Science ◽  
2006 ◽  
Vol 46 (1) ◽  
pp. 180-191 ◽  
Author(s):  
P. Monneveux ◽  
C. Sánchez ◽  
D. Beck ◽  
G. O. Edmeades

Silicon ◽  
2021 ◽  
Author(s):  
Krishan K. Verma ◽  
Xiu-Peng Song ◽  
Bo Lin ◽  
Dao-Jun Guo ◽  
Munna Singh ◽  
...  

Author(s):  
Eduardo Blumwald ◽  
Rosa M. Rivero ◽  
Harkamal Wadia ◽  
Zvika Peleg ◽  
Mark Szczerba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document