Rice near-isogenic-lines (NILs) contrasting for grain yield under lowland drought stress

2011 ◽  
Vol 123 (1) ◽  
pp. 38-46 ◽  
Author(s):  
R. Venuprasad ◽  
S.M. Impa ◽  
R.P. Veeresh Gowda ◽  
G.N. Atlin ◽  
R. Serraj
Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Priyanka Dwivedi ◽  
Naleeni Ramawat ◽  
Gaurav Dhawan ◽  
Subbaiyan Gopala Krishnan ◽  
Kunnummal Kurungara Vinod ◽  
...  

Reproductive stage drought stress (RSDS) is detrimental for rice, which affects its productivity as well as grain quality. In the present study, we introgressed two major quantitative trait loci (QTLs), namely, qDTY2.1 and qDTY3.1, governing RSDS tolerance in a popular high yielding non-aromatic rice cultivar, Pusa 44, through marker-assisted backcross breeding (MABB). Pusa 44 is highly sensitive to RSDS, which restricts its cultivation across drought-prone environments. Foreground selection was carried out using markers, RM520 for qDTY3.1 and RM 521 for qDTY2.1. Background selection was achieved with 97 polymorphic SSR markers in tandem with phenotypic selection to achieve faster recurrent parent genome (RPG) recovery. Three successive backcrosses followed by three selfings aided RPG recoveries of 98.6% to 99.4% among 31 near isogenic lines (NILs). Fourteen NILs were found to be significantly superior in yield and grain quality under RSDS with higher drought tolerance efficiency (DTE) than Pusa 44. Among these, the evaluation of two promising NILs in the multilocational trial during Kharif 2019 showed that they were significantly superior to Pusa 44 under reproductive stage drought stress, while performing on par with Pusa 44 under normal irrigated conditions. These di-QTL pyramided drought-tolerant NILs are in the final stages of testing the All India Coordinated Rice Improvement Project varietal trials for cultivar release. Alternately, the elite drought-tolerant Pusa 44 NILs will serve as an invaluable source of drought tolerance in rice improvement.


2010 ◽  
Vol 32 (2) ◽  
pp. 177-187 ◽  
Author(s):  
M. R. Fernandez ◽  
F. R. Clarke ◽  
R. E. Knox ◽  
J. M. Clarke ◽  
A. K. Singh

1996 ◽  
Vol 76 (4) ◽  
pp. 707-714 ◽  
Author(s):  
B. Ehdaie ◽  
J. G. Waines

The Rht1 and Rht2 dwarfing genes have been used extensively to reduce height in wheat (Triticum aestivum L.). The Rht3 gene is also a potent dwarfing gene. Information in the literature is limited or conflicting as to the comparative effects of these genes on water-use efficiency (WUE) and agronomic performance under different environments. Four near-isogenic lines, rhtrht, Rht1Rht1, Rht2Rht2, and Rht3Rht3 in Maringa and three, rhtrht, Rht2Rht2, and Rht3Rht3 in Nainan 60 bread wheat backgrounds were used to determine the effects of dwarfing genes on plant height, total dry matter (TDM) and its components, evapotranspiration efficiency (ETE, TDM/water evapotranspired), WUE (grain yield/water evapotranspired), and carbon isotope discrimination (Δ) in well-watered and droughted pot experiments in the glasshouse. The near-isogenic lines were also grown in well-watered and droughted field experiments. The dwarfing genes consistently reduced plant height and kernel weight in Maringa and Nainari 60 backgrounds under all environmental conditions. The dwarfing genes significantly increased number of spikes per plant in Nainari 60 background in the glasshouse and number of grains per plant in Maringa background under field conditions. In most cases, TDM or shoot dry matter (SDM) in short isogenic lines was significantly reduced. The reduction in grain yield was less than that of TDM or SDM. Therefore, harvest index was greater in short isogenic lines than their respective tall standard counterparts. The effects of the dwarfing genes on root dry matter were relatively small. The dwarfing genes, on average, depressed ETE by 21% and WUE by 15% only in Maringa background. Plant height was positively correlated with TDM and ETE but negatively so with Δ in glasshouse experiments. Grain yield and TDM were positively correlated with ETE. Δ was negatively associated with ETE, TDM, SDM, and grain yield under glasshouse conditions. Key words: Spring wheat, dwarfing genes, near-isogenic lines, water-use efficiency, carbon isotope discrimination


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Alba Farré ◽  
Liz Sayers ◽  
Michelle Leverington-Waite ◽  
Richard Goram ◽  
Simon Orford ◽  
...  

2019 ◽  
Author(s):  
Ping Sun ◽  
Yuanyuan Zheng ◽  
Pingbo Li ◽  
Hong Ye ◽  
Hao Zhou ◽  
...  

AbstractGrain size and weight contribute greatly to the grain yield of rice. In order to identify minor QTLs conferring grain size and weight, an F2 population derived from a cross between two indica rice lines showing small difference on grain size, Guangzhan 63-4S (GZ63-4S) and Dodda, and its derived F2:3 population were developed and used for QTL analysis. Totally, 36 QTLs for grain size and weight were detected, and 7 were repeatedly detected, of which the number of beneficial alleles was contributed roughly equally by the two parents. In order to further validate effects of QTLs detected, a BC1F2 population derived from a backcross of a mixture of F2 lines with GZ63-4S was developed and subjected to QTL selection. Heterozygous regions of 3 QTLs, qGS3, qTGW6.2 and qGT7 were identified, and corresponding near-isogenic lines (NILs) of each QTL were constructed with three rounds of self-crosses. In the background of NILs, qGS3 was responsible for GL, LWR, GT and TGW, qTGW6.2 was for GL and TGW, and qGT7 was for GT and TGW. These results have laid the foundation of further fine mapping and cloning of underlying genes, and could be of great use in breeding and improvement of rice lines with desirable size and yield.


2022 ◽  
Vol 12 ◽  
Author(s):  
Priyanka Dwivedi ◽  
Naleeni Ramawat ◽  
Dhandapani Raju ◽  
Gaurav Dhawan ◽  
S. Gopala Krishnan ◽  
...  

Reproductive stage drought stress (RSDS) is a major challenge in rice production worldwide. Cultivar development with drought tolerance has been slow due to the lack of precise high throughput phenotyping tools to quantify drought stress-induced effects. Most of the available techniques are based on destructive sampling and do not assess the progress of the plant’s response to drought. In this study, we have used state-of-the-art image-based phenotyping in a phenomics platform that offers a controlled environment, non-invasive phenotyping, high accuracy, speed, and continuity. In rice, several quantitative trait loci (QTLs) which govern grain yield under drought determine RSDS tolerance. Among these, qDTY2.1 and qDTY3.1 were used for marker-assisted breeding. A set of 35 near-isogenic lines (NILs), introgressed with these QTLs in the popular variety, Pusa 44 were used to assess the efficiency of image-based phenotyping for RSDS tolerance. NILs offered the most reliable contrast since they differed from Pusa 44 only for the QTLs. Four traits, namely, the projected shoot area (PSA), water use (WU), transpiration rate (TR), and red-green-blue (RGB) and near-infrared (NIR) values were used. Differential temporal responses could be seen under drought, but not under unstressed conditions. NILs showed significant level of RSDS tolerance as compared to Pusa 44. Among the traits, PSA showed strong association with yield (80%) as well as with two drought tolerances indices, stress susceptibility index (SSI) and tolerance index (TOL), establishing its ability in identifying the best drought tolerant NILs. The results revealed that the introgression of QTLs helped minimize the mean WU per unit of biomass per day, suggesting the potential role of these QTLs in improving WU-efficiency (WUE). We identified 11 NILs based on phenomics traits as well as performance under imposed drought in the field. The study emphasizes the use of phenomics traits as selection criteria for RSDS tolerance at an early stage, and is the first report of using phenomics parameters in RSDS selection in rice.


Sign in / Sign up

Export Citation Format

Share Document