scholarly journals Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates

2017 ◽  
Vol 210 ◽  
pp. 183-191 ◽  
Author(s):  
Upendra M. Sainju ◽  
Brett L. Allen ◽  
Andrew W. Lenssen ◽  
Rajan P. Ghimire
2006 ◽  
Vol 57 (3) ◽  
pp. 321 ◽  
Author(s):  
G. A. Sandral ◽  
B. S. Dear ◽  
J. M. Virgona ◽  
A. D. Swan ◽  
B. A. Orchard

Nine pasture treatments differing in species composition were monitored for changes in soil water content at a depth of 0.10–1.70 m, at 2 sites (Kamarah and Junee), in the wheatbelt of eastern Australia. Treatments containing perennial species, viz. lucerne (Medicago sativa L.), phalaris (Phalaris aquatica L.), cocksfoot (Dactylis glomerata L.), mixture (lucerne + phalaris + cocksfoot), wallaby grass (Austrodanthonia richardsonii Cashmore.), and lovegrass (Eragrostis curvula (Schrader) Nees.), were sown with subterranean clover (Trifolium subterraneum L.). In addition, 3 treatments based solely on annual species were examined: subterranean clover (sown by itself and kept weed-free with herbicides), annual (sown to subterranean clover but weed invasion not controlled), and serradella (Ornithopus compressus L.). The experiment was conducted from 1994–97 at the Junee site (annual average rainfall 550 mm/year) and from 1995–97 at the Kamarah site (annual average rainfall 450 mm per year). At the higher rainfall site (Junee), there were few differences among pasture types in soil water content to 0.70 m. Below 0.70 m the soil profile was drier under all the perennial swards than under the annual pasture treatments by the end of the 4-year pasture phase. At the drier Kamarah site, where the pasture phase was shorter due to an initial sowing failure, all the perennials, except cocksfoot, dried the profile below 1.05 m. At both sites, lucerne dried the 1.05–1.70 m section of the soil profile more rapidly than the other perennials, which apparently took longer to reach this depth. At the Junee site, the soil water deficit in May (SWD(MAY), defined as field capacity (mm) – stored soil water (mm) at the beginning of May) was largest in the phalaris, mixture, lucerne, and cocksfoot treatments (155–162 mm), whereas as under a pasture of subterranean clover alone, SWD(MAY) was only 89 mm. At the drier Kamarah site, the largest SWD(MAY) was created by the lovegrass (114 mm) and lucerne (107 mm) treatments. The cocksfoot and subterranean clover treatments created the smallest SWD(MAY) at this site, at 79 and 72 mm, respectively. The study showed that currently available C3 and C4 perennial grasses can be as effective as lucerne in drying the soil profile to 1.70 m in the 450–600 mm rainfall areas of the southern NSW wheatbelt, creating a dry soil buffer to reduce the risk of deep drainage during subsequent cropping phases. As the rate at which grasses dried the profile was slower than lucerne, pastures based on perennial grasses may have to be retained longer to achieve the same level of dewatering.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 123 ◽  
Author(s):  
Yong-Zhong Luo ◽  
Hui Liu ◽  
Guijun Yan ◽  
Guang Li ◽  
Neil Turner

Drought is one of the most harmful environmental stresses affecting the physiological, biochemical processes and growth of plants. Lucerne or alfalfa (Medicago sativa L.), one of the most popular pasture species in arid and semi-arid regions, plays a critical role in sustaining agricultural systems in many areas of the world. In order to evaluate the effect of water shortage on water status, biomass distribution and proline content, the relative water content (RWC), biomass and proline concentration in the leaves, stems and roots of lucerne seedlings under three different water regimes were studied in pots under a rainout shelter. The results showed that after water was withheld, the RWC of the different organs decreased significantly; at the same soil water content, the leaf RWC was higher than that of the stem and root. The biomass of the leaves, stems and roots were all reduced by water stress, while the root–shoot ratio increased indicating that the roots were less affected than the leaves and stems. Proline concentration increased with decreasing soil water content with the leaf proline concentration increasing more than that of stems and roots. These results indicate that roots of lucerne seedlings show greater resilience to water deficits than shoots.


2016 ◽  
Author(s):  
Luitgard Schwendenmann ◽  
Cate Macinnis-Ng

Abstract. Total soil CO2 efflux and its component fluxes, autotrophic and heterotrophic respiration, were measured in a native forest in northern Aotearoa-New Zealand. The forest is dominated by Agathis australis (kauri) and is on an acidic, clay rich soil. Soil CO2 efflux, volumentric soil water content and soil temperature were measured bi-weekly to monthly at 42 locations over 18 months. Trenching and regression analysis was used to partition the total soil CO2 efflux. The effect of tree structure was investigated by calculating an index of local contribution (Ic, based on tree size and distance to the measurement location) followed by correlation analysis between Ic and soil CO2 efflux, root biomass, litterfall and soil characteristics. The mean total soil CO2 efflux was 3.47 μmol m−2 s−1. Using uni- and bivariate models showed that soil temperature (< 40 %) and volumetric soil water content (< 20 %) were poor predictors of the temporal variation in total soil CO2 efflux. In contrast, a stronger temperature sensitivity (around 57 %) was found for heterotrophic respiration. Autotrophic respiration accounted for 25 (trenching) or 28 % (regression analysis) of total soil CO2 efflux. We found significant positive relationships between kauri tree size distribution (Ic) and soil CO2 efflux, root biomass and mineral soil CN ratio within 5–6 m of the measurement points. Using multiple regression analysis revealed that 97 % of the spatial variability in soil CO2 efflux in this kauri dominated stand was explained by root biomass and soil temperature. Our findings highlight the need to consider tree species effects and spatial patterns in soil carbon related studies.


Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


Author(s):  
Justyna Szerement ◽  
Aleksandra Woszczyk ◽  
Agnieszka Szyplowska ◽  
Marcin Kafarski ◽  
Arkadiusz Lewandowski ◽  
...  

2014 ◽  
Vol 22 (3) ◽  
pp. 300-307
Author(s):  
Meijun ZHANG ◽  
Wude YANG ◽  
Meichen FENG ◽  
Yun DUAN ◽  
Mingming TANG ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 549f-550
Author(s):  
Mongi Zekri ◽  
Bruce Schaffer ◽  
Stephen K. O'Hair ◽  
Roberto Nunez-Elisea ◽  
Jonathan H. Crane

In southern Florida, most tropical fruit crops between Biscayne and Everglades National Parks are irrigated at rates and frequencies based on experience and observations of tree growth and fruit yield rather than on reliable quantitative information of actual water use. This approach suggests that irrigation rates may be excessive and could lead to leaching of agricultural chemicals into the groundwater in this environmentally sensitive area. Therefore, a study is being conducted to increase water use efficiency and optimize irrigation by accurately scheduling irrigation using a very effective management tool (EnviroScan, Sentek Environmental Innovations, Pty., Kent, Australia) that continuously monitors soil water content with highly accurate capacitance multi-sensor probes installed at several depths within the soil profile. The system measures crop water use by monitoring soil water depletion rates and allows the maintenance of soil water content within the optimum range (below field capacity and well above the onset of plant water stress). The study is being conducted in growers' orchards with three tropical fruit crops (avocado, carambola, and `Tahiti' lime) to facilitate rapid adoption and utilization of research results.


Sign in / Sign up

Export Citation Format

Share Document