Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: Anti-inflammatory properties based on cytokine response on THP-1 macrophages

2010 ◽  
Vol 48 (6) ◽  
pp. 1568-1575 ◽  
Author(s):  
A. Ocaña-Fuentes ◽  
E. Arranz-Gutiérrez ◽  
F.J. Señorans ◽  
G. Reglero
Author(s):  
Carla Daniela de O. Nascimento ◽  
Renata Vardanega ◽  
Eric Keven Silva ◽  
Maria Angela de Almeida Meireles

The goal of this study was the obtaining of annatto seed oil fraction rich in geranylgeraniol and tocotrienols by sequential supercritical fluid extraction and to use the geranylgeraniol-rich fraction to develop emulsion-filled gels with anti-inflammatory properties by high-intensity ultrasound.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1032
Author(s):  
Taja Žitek ◽  
Dragana Borjan ◽  
Andrej Golle ◽  
Željko Knez ◽  
Maša Knez

Oregano (Origanum vulgare) is considered to be a good and cheap source of phenolic compounds with favorable biological activities, especially antimicrobial and antioxidant properties. Hypothesis/Purpose: The current work explored the optimization of the process conditions of solid–liquid extraction from Origanum vulgare to obtain extracts with high antimicrobial activity. We investigated which parameters promoted different efficiencies, leading to the maximum extraction of phenols and the consequent highest level of biological activity. Design-Expert Pro 11 was selected to design and analyze the experiments. The extracts were obtained by maceration as a simple method to recover value-added compounds from plant material, and supercritical fluid extraction was carried out as a green method with a high selectivity to obtain the compounds of interest. Pressure, temperature, and time were varied to obtain extracts with high antioxidant and antimicrobial activity. According to the results obtained using Design-Expert, the optimal conditions for maceration were at a temperature of 83 °C. The 1,1′-diphenyl-2-picrylhydrase method was used for the determination of antioxidant potential, while microdilution methods were used to determine the antimicrobial potential with regard to Staphylococcus aureus, Escherichia coli, and Candida albicans. A level of antioxidant activity of 87.21% was achieved. Supercritical fluid extracts showed higher antioxidant activity at a higher temperature of 60 °C and higher pressure of 25 MPa, although the results at 40 °C and 25 MPa were similar. The lowest minimum inhibitory concentration (MIC) values were 0.147 mg/mL for S. aureus, 0.728 mg/mL for E. coli, and 0.311 mg/mL for C. albicans. Overall, the optimal conditions for supercritical fluid extraction were 25 MPa and 40 °C. On the other hand, amounts of 0.208 mg/mL for S. aureus, 1.031 mg/mL for E. coli and 0.872 mg/mL for C. albicans were obtained using maceration. The MIC values of extracts obtained by supercritical fluid extraction were comparable to the minimum inhibitory concentration values obtained by different conventional techniques, such as those of Clevenger and Soxhlet.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1619
Author(s):  
Jae-Hoon Lee ◽  
Yun-Yeol Lee ◽  
Jangho Lee ◽  
Young-Jin Jang ◽  
Hae-Won Jang

Schisandra chinensis (Turcz.) Baill., which is known as omija in South Korea, is mainly cultivated in East Asia. The present study aimed to investigate the chemical composition of essential oil from the omija (OMEO) fruit obtained by supercritical fluid extraction using CO2 and to confirm the antioxidant and anti-inflammatory activity of OMEO using HaCaT human keratinocyte and RAW 264.7 murine macrophages. As a result of the chemical composition analysis of OMEO using gas chromatography-mass spectrometry, a total of 41 compounds were identified. The detailed analysis results are sesquiterpenoids (16), monoterpenoids (14), ketones (4), alcohols (3), aldehydes (2), acids (1), and aromatic hydrocarbons (1). OMEO significantly reduced the increased ROS levels in HaCaT keratinocytes induced by UV-B irradiation (p < 0.05). It was confirmed that 5 compounds (α-pinene, camphene, β-myrcene, 2-nonanone, and nerolidol) present in OMEO exhibited inhibitory activity on ROS production. Furthermore, OMEO showed excellent anti-inflammatory activity in RAW 264.7 macrophages induced by lipopolysaccharide. OMEO effectively inhibited NO production (p < 0.05) by suppressing the expression of the iNOS protein. Finally, OMEO was investigated for exhibition of anti-inflammatory activity by inhibiting the activation of NF-κB pathway. Taken together, OMEO could be used as a functional food ingredient with excellent antioxidant and anti-inflammatory activity.


Sign in / Sign up

Export Citation Format

Share Document