Cell plating density alters the ratio of estrogenic to progestagenic enzyme gene expression in cultured granulosa cells

2010 ◽  
Vol 93 (6) ◽  
pp. 2050-2055 ◽  
Author(s):  
Valério M. Portela ◽  
Gustavo Zamberlam ◽  
Christopher A. Price
2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A772-A773
Author(s):  
Dimiter Bogdanov Avtanski ◽  
Karina Ziskovich ◽  
Tomer Singer ◽  
Ariel Yeshua ◽  
Tal Cantor ◽  
...  

Abstract Fertility and energy metabolism are closely associated, and the cytokines produced by the adipose and muscle tissue play a role in this association. Leptin, predominantly produced by the white adipose tissue, and irisin, produced by the brown adipose and skeletal muscle tissues, are cytokines that are important in balancing energy metabolism. This study aimed to investigate the effects of leptin and irisin on steroidogenic enzyme gene expression in human ovarian granulosa cells in vitro. Granulosa cells were retrieved and isolated from ovarian follicular fluid during in vitro fertilization (IVF) procedures. Cells were placed in primary in vitro cultures and treated with increasing concentrations of leptin (25, 50, 100, 200, and 400 ng/ml) or irisin (125, 250, 500, 1,000, and 2,000 ng/ml) for 24, 48, and 72 hours. mRNA expression levels of CYP11A1, CYP19A1, CYP21A2, HSD3B1, and HSD17B3 were measured by qRT-PCR analysis. Leptin treatment of granulosa cells resulted in significant upregulation of CYP21A2 mRNA levels, while irisin significantly downregulated mRNA levels of CYP11A1, CYP19A1, and HSD3B1. Taken together, these early experiments demonstrate that leptin and irisin may affect steroid hormone production in the ovary by targeting the gene expression of key steroidogenic enzymes. Additional experiments are in progress.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 465
Author(s):  
Hesham F. Alharby ◽  
Hassan S. Al-Zahrani ◽  
Khalid R. Hakeem ◽  
Hameed Alsamadany ◽  
El-Sayed M. Desoky ◽  
...  

For maize, the potential preventive role of foliar spraying with an extract derived from maize grain (MEg, 2%), silymarin (Sm, 0.5 mM), or silymarin-enriched MEg (MEg-Sm) in attenuating the stress effects of cadmium (Cd, 0.5 mM) was examined using a completely randomized design layout. Under normal conditions, foliar spraying with MEg, Sm, or MEg-Sm was beneficial (with MEg-Sm preferred) for maize plants, whereas the benefit was more pronounced under Cd stress. The use of Cd through irrigation water decreased plant growth traits, photosynthetic efficiency, including instantaneous carboxylation efficiency, Fv/Fm, and pigment contents, and hormonal contents (e.g., auxin, gibberellins, cytokinins including trans-zeatin, and salicylic acid). These undesired findings were due to an increase in Cd content, leading to increased levels of oxidative stress (O2•− and H2O2), ionic leakage, and lipid peroxidation. Therefore, this damage resulted in an increase in the activities of nonenzymatic antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. However, under Cd stress, although foliar spray with MEg or Sm had better findings than control, MEg-Sm had better findings than MEg or Sm. Application of MEg-Sm greatly increased photosynthesis efficiency, restored hormonal homeostasis, and further increased the activities of various antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. These desired findings were due to the suppression of the Cd content, and thus the levels of O2•−, H2O2, ionic leakage, and lipid peroxidation, which were positively reflected in the growth and accumulation of dry matter in maize plants. The data obtained in this study recommend applying silymarin-enriched maize grain extract (MEg-Sm at 0.24 g Sm L−1 of MEg) as a spray solution to maize plants when exposed to excess Cd in soil or irrigation water.


2018 ◽  
Vol 10 (1) ◽  
pp. 34-39
Author(s):  
Ting Wang ◽  
Xiang-rong Tian ◽  
Xiao-yu Wu ◽  
Zhun Luo ◽  
Gui Li ◽  
...  

Diabetologia ◽  
1993 ◽  
Vol 36 (6) ◽  
pp. 503-509 ◽  
Author(s):  
J. Maury ◽  
T. Issad ◽  
D. Perdereau ◽  
B. Gouhot ◽  
P. Ferré ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document