CsAtf1, a bZIP transcription factor, is involved in fludioxonil sensitivity and virulence in the rubber tree anthracnose fungus Colletotrichum siamense

2021 ◽  
pp. 103649
Author(s):  
Miao Song ◽  
Siqi Fang ◽  
Zhigang Li ◽  
Na Wang ◽  
Xiao Li ◽  
...  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Arun Kumaran Anguraj Vadivel ◽  
Tim McDowell ◽  
Justin B. Renaud ◽  
Sangeeta Dhaubhadel

AbstractGmMYB176 is an R1 MYB transcription factor that regulates multiple genes in the isoflavonoid biosynthetic pathway, thereby affecting their levels in soybean roots. While GmMYB176 is important for isoflavonoid synthesis, it is not sufficient for the function and requires additional cofactor(s). The aim of this study was to identify the GmMYB176 interactome for the regulation of isoflavonoid biosynthesis in soybean. Here, we demonstrate that a bZIP transcription factor GmbZIP5 co-immunoprecipitates with GmMYB176 and shows protein–protein interaction in planta. RNAi silencing of GmbZIP5 reduced the isoflavonoid level in soybean hairy roots. Furthermore, co-overexpression of GmMYB176 and GmbZIP5 enhanced the level of multiple isoflavonoid phytoallexins including glyceollin, isowighteone and a unique O-methylhydroxy isoflavone in soybean hairy roots. These findings could be utilized to develop biotechnological strategies to manipulate the metabolite levels either to enhance plant defense mechanisms or for human health benefits in soybean or other economically important crops.


2013 ◽  
Vol 38 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Chunxia Wang ◽  
Katsuhiro Hosono ◽  
Masafumi Ohtsubo ◽  
Kentaro Ohishi ◽  
Jie Gao ◽  
...  

2016 ◽  
Vol 88 (3) ◽  
pp. 437-451 ◽  
Author(s):  
Paulina Lozano-Sotomayor ◽  
Ricardo A. Chávez Montes ◽  
Marina Silvestre-Vañó ◽  
Humberto Herrera-Ubaldo ◽  
Raffaella Greco ◽  
...  

2020 ◽  
Author(s):  
Shahan Mamoor

Ovarian cancer is the most lethal gynecologic cancer (1). We sought to identify genes associated with high-grade serous ovarian cancer (HGSC) by comparing global gene expression profiles of normal ovary with that of primary tumors from women diagnosed with HGSC using published microarray data (2, 3). We previously reported differential expression of the PAR-bZIP transcription factor HLF in HGSC (4). Here, we report significant differential expression of a second PAR-bZIP transcription factor, thyrotroph embryonic factor (TEF) (5) in high-grade serous ovarian tumors.


2015 ◽  
Vol 59 (9) ◽  
pp. 5396-5404 ◽  
Author(s):  
Kangji Wang ◽  
Zhenying Zhang ◽  
Xi Chen ◽  
Xianyun Sun ◽  
Cheng Jin ◽  
...  

ABSTRACTAzoles are commonly used as antifungal drugs or pesticides to control fungal infections in medicine and agriculture. Fungi adapt to azole stress by rapidly activating the transcription of a number of genes, and transcriptional increases in some azole-responsive genes can elevate azole resistance. The regulatory mechanisms that control transcriptional responses to azole stress in filamentous fungi are not well understood. This study identified a bZIP transcription factor, ADS-4 (antifungaldrugsensitive-4), as a new regulator of adaptive responses and resistance to antifungal azoles. Transcription ofads-4inNeurospora crassacells increased when they were subjected to ketoconazole treatment, whereas the deletion ofads-4resulted in hypersensitivity to ketoconazole and fluconazole. In contrast, the overexpression ofads-4increased resistance to fluconazole and ketoconazole inN. crassa. Transcriptome sequencing (RNA-seq) analysis, followed by quantitative reverse transcription (qRT)-PCR confirmation, showed that ADS-4 positively regulated the transcriptional responses of at least six genes to ketoconazole stress inN. crassa. The gene products of four ADS-4-regulated genes are known contributors to azole resistance, including the major efflux pump CDR4 (Pdr5p ortholog), an ABC multidrug transporter (NcAbcB), sterol C-22 desaturase (ERG5), and a lipid transporter (NcRTA2) that is involved in calcineurin-mediated azole resistance. Deletion of theads-4-homologous gene Afads-4inAspergillus fumigatuscaused hypersensitivity to itraconazole and ketoconazole, which suggested that ADS-4 is a functionally conserved regulator of adaptive responses to azoles. This study provides important information on a new azole resistance factor that could be targeted by a new range of antifungal pesticides and drugs.


2021 ◽  
Author(s):  
Mirunalini Ravichandran ◽  
Dominik Rafalski ◽  
Oscar Ortega-Recalde ◽  
Claudia I Davies ◽  
Cassandra R Glanfield ◽  
...  

TET (ten-eleven translocation) enzymes catalyze the oxidation of 5-methylcytosine bases in DNA, thus driving active and passive DNA demethylation. Here, we report that the catalytic cores of mammalian TET enzymes favor CpGs embedded within bHLH and bZIP transcription factor binding sites, with 250-fold preference in vitro. Crystal structures and molecular dynamics calculations show that sequence preference is caused by intra-substrate interactions and CpG flanking sequence indirectly affecting enzyme conformation. TET sequence preferences are physiologically relevant as they explain the rates of DNA demethylation in TET-rescue experiments in culture and in vivo within the zygote and germline. Most and least favorable TET motifs represent DNA sites that are bound by methylation-sensitive immediate-early transcription factors and OCT4, respectively, illuminating TET function in transcriptional responses and pluripotency support. One-Sentence Summary: The catalytic domains of the enzymes that facilitate passive and drive active DNA demethylation have intrinsic sequence preferences that target DNA demethylation to bHLH and bZIP transcription factor binding sites.


Sign in / Sign up

Export Citation Format

Share Document