Expression and Co-expression Analyses of WRKY, MYB, bHLH and bZIP Transcription Factor Genes in Potato (Solanum tuberosum) Under Abiotic Stress Conditions: RNA-seq Data Analysis

2021 ◽  
Author(s):  
Ertugrul Filiz ◽  
Firat Kurt
2018 ◽  
Vol 8 (2) ◽  
pp. 295-305 ◽  
Author(s):  
Yu Zhang ◽  
Zhichao Xu ◽  
Aijia Ji ◽  
Hongmei Luo ◽  
Jingyuan Song

2018 ◽  
Vol 27 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Agni Shekhar Pandey ◽  
Eshan Sharma ◽  
Nitin Jain ◽  
Brinderjit Singh ◽  
Naini Burman ◽  
...  

2015 ◽  
Vol 3 (3) ◽  
pp. 197-207 ◽  
Author(s):  
Kil Hyun Kim ◽  
Yang Jae Kang ◽  
Sangrea Shim ◽  
Min-Jung Seo ◽  
Seong-Bum Baek ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 401
Author(s):  
Zhen Liu ◽  
Yuhui Liu ◽  
Jeffrey A. Coulter ◽  
Baoyun Shen ◽  
Yuanming Li ◽  
...  

WD40 proteins, also known as WD40 domain proteins, constitute a large gene family in eukaryotes and play multiple roles in cellular processes. However, systematic identification and analysis of WD40 proteins have not yet been reported in potato (Solanum tuberosum L.). In the present study, 178 potato WD40 (StWD40) genes were identified and their distribution on chromosomes, gene structure, and conserved motifs were assessed. According to their structural and phylogenetic protein features, these 178 StWD40 genes were classified into 14 clusters and 10 subfamilies. Collinearity analysis showed that segmental duplication events played a major role in the expansion of the StWD40 gene family. Synteny analysis indicated that 45 and 23 pairs of StWD40 genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively, and that these gene pairs evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-specific expression and abiotic stress-responsive StWD40 genes in doubled monoploid potato (DM). Furthermore, we further analyzed the WD40 genes might be involved in anthocyanin biosynthesis and drought stress in tetraploid potato cultivars based on RNA-seq data. In addition, a protein interaction network of two homologs of Arabidopsis TTG1, which is involved in anthocyanin biosynthesis, was constructed to identify proteins that might be related to anthocyanin biosynthesis. The result showed that there were 112 pairs of proteins interacting with TTG1, with 27 being differentially expressed in pigmented tissues. This study indicates that WD40 proteins in potato might be related to anthocyanin biosynthesis and abiotic stress responses.


2006 ◽  
Vol 96 (10) ◽  
pp. 1116-1123 ◽  
Author(s):  
Amélie L. Dauch ◽  
Suha H. Jabaji-Hare

Colletotrichum coccodes is a biocontrol agent of velvetleaf (Abutilon theophrasti), a noxious weed of corn and soybean. Metallothioneins (MTs) and basic region/leucine zipper motif (bZIP) are heavy-metal-binding proteins and transcription factors, respectively, that have been related to several plant processes, including the responses of plants to pathogen attack. Previous investigation of the determinants involved in the velvet-leaf-C. coccodes interaction had shed light on particular plant and fungal genes expressed in this pathosystem. Here, we report on the temporal expression patterns of two distinct types (2 and 3) of MT and bZIP transcription factor genes in velvetleaf leaves following infection with C. coccodes using quantitative reverse-transcription polymerase chain reaction. Gene expression ratios were significantly upregulated 1 day after infection (DAI), a time at which velvetleaf leaves appeared symptomless. At 2 DAI, bZIP and type 3 MT expression ratios dropped to levels significantly lower than those estimated for noninfected plants. Necrotic symptoms appeared 5 DAI and increased with time, during which gene expression levels were maintained either below or at levels observed in the control. These findings indicate that C. coccodes altered the expression of type 2 and 3 MT and bZIP genes. In addition, this is the first report on induction of a type 3 MT in plants in response to a pathogen attack.


2021 ◽  
Vol 22 (6) ◽  
pp. 2821
Author(s):  
Lixia Zhou ◽  
Rajesh Yarra

The AP2/ERF transcription factor family members play crucial roles in controlling plant growth and development, as well as responses to various abiotic stresses. Genome-wide identification and characterization of AP2/ERF genes has not yet been carried out in the oil palm genome. In the present work, we reported the occurrence of 172 EgAP2/ERFs (AP2, ERF, RAV & Soloist members) through genome-wide identification. Phylogenetic analysis was used to divide them into four groups, including: 34 AP2, 131 ERF, 5 RAV, and 2 Soloist gene family members. All 172 AP2/ERF members were unevenly distributed across 16 chromosomes of oil palm. Gene duplication analysis elucidated the tandem duplication of AP2/ERFs on chromosome blocks of the oil palm genome during evolution. Gene structure as well as conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the AP2/ERF genes. Several cis-regulatory elements—related to hormone, stress, and defense responses—were identified in the promoter regions of AP2/ERFs. Tissue-specific expression of 172 AP2/ERFs in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Finally, abiotic stress (salinity, cold & drought)-responsive AP2/ERFs in the oil palm genome were validated through qPCR analysis. Our study provided valuable information on oil palm AP2/ERF superfamily members and dissected their role in abiotic stress conditions.


Sign in / Sign up

Export Citation Format

Share Document