Dimensionless analytical solutions for steady-state fire smoke spread through high-rise shaft

2017 ◽  
Vol 93 ◽  
pp. 12-20 ◽  
Author(s):  
Dahai Qi ◽  
Liangzhu (Leon) Wang ◽  
Jie Ji ◽  
Man Li
2002 ◽  
Vol 38 (8) ◽  
pp. 20-1-20-5 ◽  
Author(s):  
Jianting Zhu ◽  
Binayak P. Mohanty

2017 ◽  
Vol 59 (2) ◽  
pp. 167-182 ◽  
Author(s):  
H. Y. ALFIFI

Semi-analytical solutions are derived for the Brusselator system in one- and two-dimensional domains. The Galerkin method is processed to approximate the governing partial differential equations via a system of ordinary differential equations. Both steady-state concentrations and transient solutions are obtained. Semi-analytical results for the stability of the model are presented for the identified critical parameter value at which a Hopf bifurcation occurs. The impact of the diffusion coefficients on the system is also considered. The results show that diffusion acts to stabilize the systems better than the equivalent nondiffusive systems with the increasing critical value of the Hopf bifurcation. Comparison between the semi-analytical and numerical solutions shows an excellent agreement with the steady-state transient solutions and the parameter values at which the Hopf bifurcations occur. Examples of stable and unstable limit cycles are given, and Hopf bifurcation points are shown to confirm the results previously calculated in the Hopf bifurcation map. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with the numerical solutions of partial differential equations.


2012 ◽  
Vol 226-228 ◽  
pp. 1472-1475
Author(s):  
Pei Pei Yang ◽  
Xiao Lu Shi ◽  
Bi Ming Shi

Once the tunnel fires happened, it will cause a major accident. And the smoke control of the runnel is important to fire prevention. A numerical simulation of the fire smoke flow in the tunnel model is presented by using FDS. The influence of different longitudinal ventilation on fire smoke flow of tunnel is obtained. And providing theory basis for tunnel ventilation system design, smoke spread control and safety evacuation. The results shown that in order to avoid reverse-flow and extend the time of smoke at the top of tunnel, the longitudinal speed should be controlled in 3.4 m/s; because of the role of longitudinal ventilation, smoke flow resistance and longitudinal ventilation generated by the effect of smoke flow resistance make the gas temperature first rise and then down.


2014 ◽  
Vol 513-517 ◽  
pp. 2635-2638
Author(s):  
Xuan Wei Peng

The corridor is an important way of evacuation and rescue in building fire. The fire smoke flow prediction software developed successfully was applied to simulate a building with a 28.8 meters long corridor to investigate the effect of the different thermal insulation on fire smoke spread rate. Two representative thermal insulation, external insulation and internal insulation were compared. In 3600s fire time, air temperature in the corridor of external insulation is much lower than that of internal insulation. The air temperature gap gets narrowed between the two insulation methods in the corridor with the prolongation of fire time. Temperature difference increases as the distance increase from the fire ignition place. The corridor gets unsafe of internal insulation in 7 minute since fire ignition, while about half the length of the corridor stay secure of external insulation in 10 minutes since fire ignition. That implies more available safe egress time can be gained with external insulation than internal insulation. Smoke spread rate was numerically compared based on the air temperature variation. Smoke spread rate of internal insulation is much higher than that of external insulation and the corresponding ratio is 1.732:1.


Author(s):  
A. B. Struk ◽  
M. I. Vaskovskyi ◽  
I. P. Shatskyi ◽  
M. V. Makoviichuk

The article considers the issues of forecasting the strength of underground pipelines, which are operated on seismically active sections of the route, composed of relatively rigid mobile blocks. According to the literature, the problems of the influence of the interaction of base faults on the stress state of the pipeline have not been studied to date. The aim of the work is to develop a model for the analysis of abnormal stresses in the underground pipeline on a damaged basis caused by static or time-harmonious mutual movement of its blocks along the axis of the pipe in the presence of several faults. Boundary value problems for differential equations of static tensile-compression and steady-state longitudinal oscillations of a tubular rod with discontinuous right-hand sides are formulated. Based on the analytical solutions of these problems for the cases of antisymmetric and symmetric displacement of the foundation blocks, the distributions of axial displacement and equivalent stress in the pipe, depending on the distance between faults and the frequency of forced oscillations, are investigated.


2021 ◽  
Vol 252 ◽  
pp. 02050
Author(s):  
Lu Yuhan ◽  
Weng Miao cheng ◽  
Liu Fang

Deep buried metro stations require longer and more inclined exit passages to connect with the outside. The fire characteristics of these inclined and narrow passages are significantly different from those of above-ground or shallow buried metro station exit passages, and at the same time fires in those inclined channels have a greater risk. This paper takes a channel of deep buried tunnel station in Chongqing as an example and simplifies the actual passage to establish a 3D model to study the smoke spread characteristics along the passage with different smoke vent characteristics including shape and location by FDS, as well as temperature distribution characteristic under different working conditions. The results show that: after a fire, smoke will spread upwards rapidly under the action of thermal buoyancy, and mechanical smoke exhaust plays a certain role in controlling smoke, which is more obvious at the beginning of the fire; there are differences in the smoke exhaust efficiency of different smoke extraction openings shape, but the differences are small, and square smoke vents have a slightly better effect on smoke control than other shapes of smoke vents; changing the location of smoke outlets has a greater impact on the environment in the tunnel. When the smoke vent is located directly above the fire source, the mechanical smoke control effect is significantly better than other positions, and as the distance between smoke vent and fire source increases, the average temperature along the passage increases. At the same time, because of the pressure difference after the fire, the emergency staircase and the upstream of the fire source are basically unaffected by smoke.


Sign in / Sign up

Export Citation Format

Share Document