scholarly journals Numerical simulation on the characteristics of smoke exhaust effect with different sets of smoke vent in deep buried inclined channel fire

2021 ◽  
Vol 252 ◽  
pp. 02050
Author(s):  
Lu Yuhan ◽  
Weng Miao cheng ◽  
Liu Fang

Deep buried metro stations require longer and more inclined exit passages to connect with the outside. The fire characteristics of these inclined and narrow passages are significantly different from those of above-ground or shallow buried metro station exit passages, and at the same time fires in those inclined channels have a greater risk. This paper takes a channel of deep buried tunnel station in Chongqing as an example and simplifies the actual passage to establish a 3D model to study the smoke spread characteristics along the passage with different smoke vent characteristics including shape and location by FDS, as well as temperature distribution characteristic under different working conditions. The results show that: after a fire, smoke will spread upwards rapidly under the action of thermal buoyancy, and mechanical smoke exhaust plays a certain role in controlling smoke, which is more obvious at the beginning of the fire; there are differences in the smoke exhaust efficiency of different smoke extraction openings shape, but the differences are small, and square smoke vents have a slightly better effect on smoke control than other shapes of smoke vents; changing the location of smoke outlets has a greater impact on the environment in the tunnel. When the smoke vent is located directly above the fire source, the mechanical smoke control effect is significantly better than other positions, and as the distance between smoke vent and fire source increases, the average temperature along the passage increases. At the same time, because of the pressure difference after the fire, the emergency staircase and the upstream of the fire source are basically unaffected by smoke.

2021 ◽  
pp. 1420326X2199842
Author(s):  
Fei Wang ◽  
Fang Liu ◽  
Imad Obadi ◽  
Miaocheng Weng

Metro trains running in tunnels cause piston wind, and when a metro train stops in a tunnel due to a fire, the effect of the piston wind on smoke propagation characteristics cannot be ignored. In this paper, a theoretical model based on the unsteady flow theory of the Bernoulli equation was established to describe the change in piston wind speed under fire conditions. The characteristics of the smoke propagation in tunnel fires under the effect of the piston wind were analysed by means of numerical simulation. The result indicates that the piston wind has a significant effect on the characteristics of smoke distribution. In a longitudinally ventilated tunnel, whether the direction of piston wind is the same as that of longitudinal ventilation could seriously affect the control of fire smoke. When the direction is the same, the piston wind could enhance the smoke control effect of the longitudinal ventilation. Otherwise, the smoke control effect could be significantly diminished, and the smoke control by the critical wind speed of longitudinal ventilation would fail. The findings could contribute to a better understanding of the characteristics of tunnel fire to control smoke spread under the influence of piston wind.


2012 ◽  
Vol 226-228 ◽  
pp. 1472-1475
Author(s):  
Pei Pei Yang ◽  
Xiao Lu Shi ◽  
Bi Ming Shi

Once the tunnel fires happened, it will cause a major accident. And the smoke control of the runnel is important to fire prevention. A numerical simulation of the fire smoke flow in the tunnel model is presented by using FDS. The influence of different longitudinal ventilation on fire smoke flow of tunnel is obtained. And providing theory basis for tunnel ventilation system design, smoke spread control and safety evacuation. The results shown that in order to avoid reverse-flow and extend the time of smoke at the top of tunnel, the longitudinal speed should be controlled in 3.4 m/s; because of the role of longitudinal ventilation, smoke flow resistance and longitudinal ventilation generated by the effect of smoke flow resistance make the gas temperature first rise and then down.


2012 ◽  
Vol 424-425 ◽  
pp. 1224-1227
Author(s):  
Xin Han ◽  
Xiao Ming Gao ◽  
Bei Hua Cong

Taking a subway tunnel as the research object and based on the CFD simulation method, this paper adopts a large eddy simulation analysis software FDS to simulate and analyze the effect of exhaust velocity on fire smoke control under the condition of the same longitudinal ventilation velocity in subway tunnel. The simulated results can provide some reference to design institutes in the selection of exhaust fan. While the longitudinal ventilation velocity set as 1m/s, the simulation results demonstrate that a quite good smoke control effect could be achieved when the exhaust velocity reaches 5 m/s in the smoke exhaust duct


2011 ◽  
Vol 250-253 ◽  
pp. 2919-2922
Author(s):  
Jing Xian Li ◽  
Jia Peng He

In this paper, full-scale experiments had been designed and implemented in wind tunnel to simulate the corridor fire. A combination model with smoke buffer and other smoke-control modes was established on the base of experiment, and Fire Dynamic Simulation (FDS) was applied to simulate fire in the same conditions. The results reflected that the model is reasonable and viable by compared the simulation results and the experiment dates and the error of the average temperature is about 4.08%. Experimental studies also show that in those modes one smoke outlet is needed every 30m and it is better to set near the ignition source. Its exhaust efficiency is 72.1%, better than others; additionally it needs to put up smoke screen to strengthen the smoke exhaust effect. Thus the best combination with smoke-control is perfect in corridor.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6983
Author(s):  
Zhiyong Zhou ◽  
Yao Lu ◽  
Yimeng Cui

High temperature smoke caused by fire is a major cause of casualties. In order to ensure the safety of personnel, it is very important to control the spread of smoke and enable personnel to quickly withdraw from the fire scene. While traditional hard isolation, such as fire doors, may hinder the safe evacuation of people, the use of an air curtain as a flexible isolation has received more and more attention from researchers. In this paper, the influence of jet direction of compound air curtain on the smoke control effect was studied, and six working conditions were designed. The temperature and smoke isolation of the compound air curtain were numerically simulated by using ANSYS FLUENT software. The parameters such as temperature, velocity pressure and velocity streamline were analyzed, and the smoke control effects of six different jet directions were discussed. The simulation results were verified by Pyrosim fire simulation software simulation software. The results show that the direction of jet flow has a significant influence on the smoke control effect, and the fire smoke control effect under working conditions 4 and 5 is better. The working condition 5 (both air curtain A and air curtain B have outward jet direction) has the best smoke prevention effect, which is suitable for a situation that is close to the fire source. Working condition 4 (outward direction of air curtain A and inward direction of air curtain B) has the second-best effect of smoke prevention, which is suitable for situations far from the fire source.


Author(s):  
Xiangliang Tian ◽  
Chang Liu ◽  
Maohua Zhong

Abstract In order to study the optimization modes of smoke control in the case of fire in metro transfer channel, a full-scale numerical station model with a single transfer channel is established. In case of fire, the influencing of ceiling beam, vent size on smoke control effect are analyzed. The ceiling temperature profile, CO concentration, visibility and smoke layer height under different conditions were studied to evaluate the smoke control effect of transfer channel and station hall. Based on this, the optimization suggestions of ventilation and smoke exhaust system design and smoke control modes for transfer channel are put forward. The results show that, the ceiling beams can effectively delay the speed of smoke diffusion and gain time for personnel escape and emergency rescue. The vent size has a great influence on the ventilation and smoke exhaust effect under the condition of meeting the designed ventilation capacity. Among the three common vent sizes listed in this research, the smaller the size is, the better the smoke control effect is. The length and width of vent with best smoke control effect are 1.2 m and 0.8m respectively.


2012 ◽  
Vol 594-597 ◽  
pp. 1245-1250
Author(s):  
Jia Yun Sun ◽  
Zheng Fang ◽  
Jian Ping Yuan

Compared with operated tunnel, one of the distinguishing features of a tunnel during construction is its single-ended geometry. The direction of fire smoke movement is the same as the direction for worker to evacuate the tunnel. This paper calculates fire-induced conditions, including temperature, smoke movement and visibility, which are influenced by two different ventilation systems. According to the simulation, when the fire located at bottom of tunnel, forced extraction is more effective; when the fire located at middle of tunnel, forced injection can protect workers in tunnel. Besides,increasing ventilation rate can control smoke spread effectively.


2018 ◽  
Vol 342 ◽  
pp. 231-241 ◽  
Author(s):  
Zhigang Wang ◽  
Xishi Wang ◽  
Yanqing Huang ◽  
Changfa Tao ◽  
Heping Zhang

Author(s):  
Taher Halawa

Abstract The effectiveness of the smoke control strategy plays an important role in increasing safety levels when fire accidents occur in road tunnels. This paper introduces clarifications about how the efficiency of smoke extraction control using solid curtains can be increased by placing smoke extraction vents close to the solid curtains. The effect of adding a solid curtain with different heights and at various positions relative to a smoke extraction vent was studied in this paper. A 14.3% increase in the vent flowrate occurs at the time corresponding to the fire peak heat release rate when the distance between the solid curtain and the vent is equivalent to 90% of the tunnel height and when the solid curtain height is equal to 16% of the tunnel height. High temperature and low visibility conditions occur near the solid curtain at the smoke-trapped area when the smoke curtain height exceeds 40% of the tunnel height. Using a solid curtain positioned far away from the vent with a distance equals to 90% of the tunnel height and with a height in the range from 16% to 30% of the tunnel height achieves the best results in terms of suppression of smoke spread and attaining acceptable visibility and temperature levels at the region where the smoke is trapped by the solid curtain.


2011 ◽  
Vol 187 ◽  
pp. 169-174 ◽  
Author(s):  
Yu Cheng Liu ◽  
Yu Bin Liu

For complex controlled object with the large time delay link, it was difficult to get effective control effect by means of traditional fuzzy control algorithm. Aimed at enhancing the control quality in control precision and so on for complex system, the paper proposed a sort of fuzzy intelligence control strategy. It fused the expert control experience combing with human simulated intelligence control, designed the control rule, proposed the mode of running controller and explored the principle of parameter calibrating layer. The system simulation experiment explained that the control effect was much better than optimal PID control in dynamic and steady quality. The results show that the fuzzy intelligent control strategy is reasonable and feasible, high in control precision, better in dynamical and steady control effect, and it represents very strong robustness.


Sign in / Sign up

Export Citation Format

Share Document