Pressure drop of wet gas flow with ultra-low liquid loading through DP meters

2019 ◽  
Vol 70 ◽  
pp. 101664 ◽  
Author(s):  
Xuebo Zheng ◽  
Denghui He ◽  
Bofeng Bai
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Goel Paridhi ◽  
K. Nayak Arun

Abstract Post Fukushima, nuclear plants are being retrofitted with severe accident mitigation measures. For attaining depressurization of the containment and mitigate the consequences of the release of the radioactivity to the environment during a severe accident condition, filtered containment venting systems (FCVS) are proposed to be installed in existing reactors and being designed for advanced reactors. The design of FCVS is particular to the reactor type. The FVCS configuration considered in this paper comprises of a manifold of venturi scrubber enclosed in a scrubber tank along with metal fiber filter and demister for an advanced Indian reactor. This study focuses on the assessment of the design of the venturi scrubber for the reactor conditions at which venting is carried out through a numerical model. The numerical model is first validated with experiments performed for prototypic conditions. The predicted pressure drop and the iodine absorption efficiency were found to be in good match with the experimental measurements. Subsequently, the model is implemented for predicting the hydrodynamics, i.e., pressure drop, droplet sizes and distribution, and iodine absorption for prototypic conditions. The hydrodynamics, i.e., pressure profile in the venturi scrubber showed a decrease in the converging section and in the throat section. The diverging section showed decrease in recovery of pressure with the decrease in gas flow because of the increased liquid loading to the scrubber. The iodine absorption efficiency showed a value of 92% for high gas velocity which decreased to 68% for the lowest gas flow rate.


2008 ◽  
Vol 2008 ◽  
pp. 1-25 ◽  
Author(s):  
Fang Lide ◽  
Zhang Tao ◽  
Xu Ying

When Venturi meters are used in wet gas, the measured differential pressure is higher than it would be in gas phases flowing alone. This phenomenon is called over-reading. Eight famous over-reading correlations have been studied by many researchers under low- and high-pressure conditions, the conclusion is separated flow model and homogeneous flow model performing well both under high and low pressures. In this study, a new metering method is presented based on homogeneous and separated flow theory; the acceleration pressure drop and the friction pressure drop of Venturi under two-phase flow conditions are considered in new correlation, and its validity is verified through experiment. For low pressure, a new test program has been implemented in Tianjin University’s low-pressure wet gas loop. For high pressure, the National Engineering Laboratory offered their reports on the web, so the coefficients of the new proposed correlation are fitted with all independent data both under high and low pressures. Finally, the applicability and errors of new correlation are analyzed.


2016 ◽  
Vol 75 ◽  
pp. 183-188 ◽  
Author(s):  
Chao Yuan ◽  
Ying Xu ◽  
Tao Zhang ◽  
Jing Wei ◽  
Huaxiang Wang

Author(s):  
S. P. C. Belfroid ◽  
A. van Wijhe

Liquid loading is the mechanism that is associated with increased liquid hold-up and liquid back flow at lower gas flow rates in gas production wells. In laboratory, most liquid loading experiments are performed at fixed gas and liquid rates (mass flow controlled). In the field, the well behavior is a coupled well-reservoir system in which the reservoir results in a pressure or mass flow controlled inflow, depending on the reservoir characteristics. In this paper results are presented which have been performed with a pressure controlled vessel attached to a vertical pipe. The pressure drop between the vessel was varied to represent reservoir characteristics from tight to prolific. The goal of the experiments was to evaluate the relation and the time ‘trajectory’ between the minimum in the pressure drop curve and the actual flooding point. From these experiments it was concluded that the stability is determined by the overall pressure drop curve. That is the pressure drop from vessel to separator and not the tubing pressure drop curve. This stability point can be at a higher or lower velocity than the actual loading/flooding point and therefore, loading is not the cause of the production decrease. That also means stable production is possible below the flooding point in slugging conditions. In future, the distinction between stable flow and loading/flooding must be made more strict.


Author(s):  
Carolina V. Barreto ◽  
Hamidreza Karami ◽  
Eduardo Pereyra ◽  
Cem Sarica

One of the methods to unload liquid from gas wells is foam-assisted lift. The applied surfactant reduces the liquid surface tension facilitating foam stability, and consequently, reducing mixture density and gas slippage. In this experimental study, a 2-in ID facility consisting of a 64-ft lateral section followed by a 41-ft vertical section is used to determine the optimum surfactant delivery location in horizontal wells. Water and compressed air are the liquid and gas phases, and an anionic surfactant is applied continuously with fixed concentration. Lateral section inclination is varied between ±1°, and four injection points are tested, including one with a static mixer, used as an external source of agitation. Recorded parameters are flow pattern, pressure gradient, liquid holdup, and foam quality. In the lateral section, the highest efficiency is obtained by using a static mixer causing significant drop in liquid holdup and increase in pressure drop due to frictional losses. All other injection points show similar behavior to the air-water case, due to negligible generated foam amid the existing flow pattern agitation. In the vertical section, all injection points show similar and significant drops in liquid holdup and delays in liquid loading onset compared to air-water case, and foam quality decreases as gas flow rate is reduced. Increasing the liquid flow rate causes increases in liquid holdup and pressure drop and shifts liquid loading onset to higher gas flow rates. The experimentally observed liquid loading onset is compared to the predictions of Turner et al. (1969), and a modification is proposed in this correlation to consider the effects of surfactant injection. The number of experimental studies investigating foam effects on liquid loading is limited especially for off-vertical configurations. The results of this study provide an experimental source to optimize foam lift in deviated wells.


Author(s):  
Denghui He ◽  
Bofeng Bai

The pressure drop is considerably significant for the differential pressure meter to measure the flow rate of the two-phase flow. Little is known about the pressure drop characteristics of the V-Cone meter when it is used to measure the wet gas flow. The objective of this paper is to investigate the two-phase pressure drop of the V-Cone meter and develop a correlation for predicting its pressure drop. A V-Cone meter with the equivalent diameter ratio of 0.55 was investigated experimentally. The experimental fluid was air and water. The test pressure ranged from 0.1 MPa to 0.4 MPa, and the gas and liquid mass flow rate ranged from 100 Nm3/h to 500 Nm3/h and from 0.05 m3/h to 2.2 m3/h, respectively. The experimental results showed that the existing correlations, which are developed for the orifice plate meter and the Venturi meter, are not applicable for the V-Cone meter to predict the pressure drop. The two-phase mass flow coefficient, K, was used to develop the two-phase pressure drop correlation. The influences of the Lockhart-Martinelli parameter, the gas densiometric Froude number and the operating pressure on K were investigated. The new pressure drop correlation can accurately predict the pressure drop of the V-Cone meter for the wet gas. The relative error of the pressure drop is less than ± 9.0% at the 95.1% confidence level and the average relative error is 3.88%. The pressure drop prediction correlation provides a reference for developing the correlation of the wet gas measurement.


2013 ◽  
Author(s):  
Sung Chan Cho ◽  
Yun Wang

In this paper, two-phase flow dynamics in a micro channel with various wall conditions are both experimentally and theoretically investigated. Annulus, wavy and slug flow patterns are observed and location of liquid phase on different wall condition is visualized. The impact of flow structure on two-phase pressure drop is explained. Two-phase pressure drop is compared to a two-fluid model with relative permeability correlation. Optimization of correlation is conducted for each experimental case and theoretical solution for the flows in a circular channel is developed for annulus flow pattern showing a good match with experimental data in homogeneous channel case.


Sign in / Sign up

Export Citation Format

Share Document