Unstable Well Behaviour in Gas Well Liquid Loading

Author(s):  
S. P. C. Belfroid ◽  
A. van Wijhe

Liquid loading is the mechanism that is associated with increased liquid hold-up and liquid back flow at lower gas flow rates in gas production wells. In laboratory, most liquid loading experiments are performed at fixed gas and liquid rates (mass flow controlled). In the field, the well behavior is a coupled well-reservoir system in which the reservoir results in a pressure or mass flow controlled inflow, depending on the reservoir characteristics. In this paper results are presented which have been performed with a pressure controlled vessel attached to a vertical pipe. The pressure drop between the vessel was varied to represent reservoir characteristics from tight to prolific. The goal of the experiments was to evaluate the relation and the time ‘trajectory’ between the minimum in the pressure drop curve and the actual flooding point. From these experiments it was concluded that the stability is determined by the overall pressure drop curve. That is the pressure drop from vessel to separator and not the tubing pressure drop curve. This stability point can be at a higher or lower velocity than the actual loading/flooding point and therefore, loading is not the cause of the production decrease. That also means stable production is possible below the flooding point in slugging conditions. In future, the distinction between stable flow and loading/flooding must be made more strict.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Goel Paridhi ◽  
K. Nayak Arun

Abstract Post Fukushima, nuclear plants are being retrofitted with severe accident mitigation measures. For attaining depressurization of the containment and mitigate the consequences of the release of the radioactivity to the environment during a severe accident condition, filtered containment venting systems (FCVS) are proposed to be installed in existing reactors and being designed for advanced reactors. The design of FCVS is particular to the reactor type. The FVCS configuration considered in this paper comprises of a manifold of venturi scrubber enclosed in a scrubber tank along with metal fiber filter and demister for an advanced Indian reactor. This study focuses on the assessment of the design of the venturi scrubber for the reactor conditions at which venting is carried out through a numerical model. The numerical model is first validated with experiments performed for prototypic conditions. The predicted pressure drop and the iodine absorption efficiency were found to be in good match with the experimental measurements. Subsequently, the model is implemented for predicting the hydrodynamics, i.e., pressure drop, droplet sizes and distribution, and iodine absorption for prototypic conditions. The hydrodynamics, i.e., pressure profile in the venturi scrubber showed a decrease in the converging section and in the throat section. The diverging section showed decrease in recovery of pressure with the decrease in gas flow because of the increased liquid loading to the scrubber. The iodine absorption efficiency showed a value of 92% for high gas velocity which decreased to 68% for the lowest gas flow rate.


Author(s):  
Carolina V. Barreto ◽  
Hamidreza Karami ◽  
Eduardo Pereyra ◽  
Cem Sarica

One of the methods to unload liquid from gas wells is foam-assisted lift. The applied surfactant reduces the liquid surface tension facilitating foam stability, and consequently, reducing mixture density and gas slippage. In this experimental study, a 2-in ID facility consisting of a 64-ft lateral section followed by a 41-ft vertical section is used to determine the optimum surfactant delivery location in horizontal wells. Water and compressed air are the liquid and gas phases, and an anionic surfactant is applied continuously with fixed concentration. Lateral section inclination is varied between ±1°, and four injection points are tested, including one with a static mixer, used as an external source of agitation. Recorded parameters are flow pattern, pressure gradient, liquid holdup, and foam quality. In the lateral section, the highest efficiency is obtained by using a static mixer causing significant drop in liquid holdup and increase in pressure drop due to frictional losses. All other injection points show similar behavior to the air-water case, due to negligible generated foam amid the existing flow pattern agitation. In the vertical section, all injection points show similar and significant drops in liquid holdup and delays in liquid loading onset compared to air-water case, and foam quality decreases as gas flow rate is reduced. Increasing the liquid flow rate causes increases in liquid holdup and pressure drop and shifts liquid loading onset to higher gas flow rates. The experimentally observed liquid loading onset is compared to the predictions of Turner et al. (1969), and a modification is proposed in this correlation to consider the effects of surfactant injection. The number of experimental studies investigating foam effects on liquid loading is limited especially for off-vertical configurations. The results of this study provide an experimental source to optimize foam lift in deviated wells.


Author(s):  
Miel Hofmann ◽  
◽  
Sudad Al-Obaidi ◽  
I. Kamensky ◽  

As a result of flooding and accumulations of liquid at the bottomholes, the operating conditions of gas wells become complicated, so that they end up self-squeezing and losing of gas production. A method is proposed for determining the technological parameters of operation of the gas wells with the purpose of removing liquid from the bottom of the wells. Data from the gas dynamics and special studies were used to develop this method, which has been tested on one of the oil and gas condensate fields. It offers the possibility to increase the accuracy of the information provided by the fund and to ensure that the production wells are operated as efficiently as possible with the use of this method. In the case of liquid accumulation in the well that is insignificant, or when water is present in the well, the technique is beneficial in that it allows determining the technological parameters of well operation and ensuring the removal of the liquid from the bottom of the well.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
M. M. Toledo-Melchor ◽  
C. del C. Gutiérrez-Torres ◽  
J. A. Jiménez-Bernal ◽  
J. G. Barbosa-Saldaña ◽  
S. A. Martínez-Delgadillo ◽  
...  

The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water) in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in five geometries with different converging and diverging angles while the two-phase flow was only simulated for one geometry. The results obtained were validated with experimental data obtained by other researchers. The results show that the pressure drop depends significantly on the gas flow rate and that water flow rate does not have significant effects neither on the pressure drop nor on the fluid maximum velocity within the scrubber.


Author(s):  
Denghui He ◽  
Bofeng Bai

The pressure drop is considerably significant for the differential pressure meter to measure the flow rate of the two-phase flow. Little is known about the pressure drop characteristics of the V-Cone meter when it is used to measure the wet gas flow. The objective of this paper is to investigate the two-phase pressure drop of the V-Cone meter and develop a correlation for predicting its pressure drop. A V-Cone meter with the equivalent diameter ratio of 0.55 was investigated experimentally. The experimental fluid was air and water. The test pressure ranged from 0.1 MPa to 0.4 MPa, and the gas and liquid mass flow rate ranged from 100 Nm3/h to 500 Nm3/h and from 0.05 m3/h to 2.2 m3/h, respectively. The experimental results showed that the existing correlations, which are developed for the orifice plate meter and the Venturi meter, are not applicable for the V-Cone meter to predict the pressure drop. The two-phase mass flow coefficient, K, was used to develop the two-phase pressure drop correlation. The influences of the Lockhart-Martinelli parameter, the gas densiometric Froude number and the operating pressure on K were investigated. The new pressure drop correlation can accurately predict the pressure drop of the V-Cone meter for the wet gas. The relative error of the pressure drop is less than ± 9.0% at the 95.1% confidence level and the average relative error is 3.88%. The pressure drop prediction correlation provides a reference for developing the correlation of the wet gas measurement.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Pål Østebø Andersen

Summary This work studies 1D steady-state flow of gas from compressible shale matrix subject to water blocking toward a neighboring fracture. Water blocking is a capillary end effect causing wetting phase (e.g., water) to accumulate near the transition from matrix to fracture. Hydraulic fracturing is essential for economical shale gas production. Water is frequently used as fracturing fluid, but its accumulation in the matrix can reduce gas mobility and production rate. Gas transport is considered at a defined pressure drop. The model accounts for apparent permeability (slip), compressibility of gas and shale, permeability reduction, saturation tortuosity (reduced relative permeability upon compaction), and multiphase flow parameters like relative permeability and capillary pressure, which depend on wettability. The behavior of gas flow rate and distributions of gas saturation, pressure, and permeability subject to different conditions and the stated mechanisms is explored. Water blockage reduces gas relative permeability over a large zone and reduces the gas flow rate. Despite gas flowing, strong capillary forces sustain mobile water over the entire system. Reducing drawdown gave lower driving force and higher resistance (by water blockage) for gas flow. The results show that 75% reduction of drawdown made the gas flow rate a couple orders of magnitude lower compared to if there was no blockage. The impact was most severe in more water-wetsystems. The blockage caused most of the pressure drop to occur near the outlet. High pressure in the rest of the system reduced effects from gas decompression, matrix compression, and slip-enhanced permeability, whereas rapid gradients in all these effects occurred near the outlet. Gas decompression resulted in an approximately 10 times higher Darcy velocity and pressure gradient near the outlet compared to inlet, which contributed to removing blockage, but the added resistance reduced the gas production rate. Similarly, higher gas Corey exponent associated gas flow with higher pressure drop. The result was less blockage but lower gas production. Slip increased permeability, especially toward the outlet, and contributed to increase in gas production by 16%. Significant matrix compression was associated with permeability reduction and increased Corey exponent in some examples. These effects reduced production and shifted more of the pressure drop toward the outlet. Upstream pressure was more uniform, and less compression and permeability reduction were seen overall compared to a system without water blockage.


2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2534
Author(s):  
Chiawei Chang ◽  
Yishun Chen ◽  
Litsung Sheng ◽  
Shusan Hsiau

We propose a dust removal technology in which a two-stage moving granular bed filter was employed using coarse and fine filtering granules. The pressure drop, collection efficiency, and dust particulate size distributions were investigated using various mass flow rates for coarse and fine granules at room temperature. In addition, the ratio of mass consumption was used to reveal the actual mass flow. The ratio of mass consumption influenced the pressure drop, collection efficiency, and dust particulate size distributions. Particulates larger than 1.775 μm were removed by the filter. Our results showed that a mass flow of 330 g/min for coarse granules and a mass flow of 1100 g/min for fine granules provided optimal collection efficiency and particulate size distribution. The proposed design can aid the development of high-temperature systems in power plants.


2014 ◽  
Vol 48 ◽  
pp. 250-263 ◽  
Author(s):  
Christian Welz ◽  
Christoph Maurer ◽  
Paolo Di Lauro ◽  
Gerhard Stryi-Hipp ◽  
Michael Hermann

Sign in / Sign up

Export Citation Format

Share Document