Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage

2016 ◽  
Vol 190 ◽  
pp. 537-543 ◽  
Author(s):  
Yuyan Zhu ◽  
Jie Yu ◽  
Jeffrey K. Brecht ◽  
Tianjia Jiang ◽  
Xiaolin Zheng
2019 ◽  
Vol 167 (7-8) ◽  
pp. 470-478 ◽  
Author(s):  
Anwei Luo ◽  
Junqing Bai ◽  
Rui Li ◽  
Yimeng Fang ◽  
Lin Li ◽  
...  

2018 ◽  
Vol 99 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Alejandra Martínez‐Esplá ◽  
María Serrano ◽  
Domingo Martínez‐Romero ◽  
Daniel Valero ◽  
Pedro J Zapata

Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1584-1594 ◽  
Author(s):  
Johannes Petrus Louw ◽  
Lise Korsten

Very few studies have investigated the host-pathogen interaction of Penicillium spp. on nectarine. Penicillium digitatum was identified as pathogenic and highly aggressive on nectarine. A strong association was made with host age/ripeness. This points to a new mechanism or life strategy used by P. digitatum to infect and colonize previously thought nonhosts. The aim of this study was to determine the effect of postharvest storage of nectarine on the infection and colonization of P. digitatum and Penicillium expansum at molecular and physical (firmness and pH) levels. The impact of environmental conditions (cold storage) and pathogen pressure (inoculum load) was also investigated. Although disease incidence was much lower, lesions caused by P. digitatum were similar in size to those caused by P. expansum on freshly harvested nectarine. Disease incidence and lesion diameter significantly increased (larger than P. expansum) on longer stored fruit. Cold storage had the largest effect on P. digitatum. Inoculum load had a meaningful effect on both Penicillium spp. Storage significantly affected pH modulation and gene expression. The pathogens not only decreased but also, increased and maintained (similar to initial pH of the host) pH of infected tissue. The polygalacturonase (PG) gene and creA were upregulated by P. digitatum on 7-day postharvest fruit (other genes were unaffected). It partly explains the larger lesions on older or riper fruit. A different expression profile was observed from P. expansum: strong downregulation in PG and slight upregulation in pacC. Very different life strategies were used by the two Penicillium spp. when infecting nectarine. Unlike what is known on citrus, P. digitatum showed an opportunistic lifestyle that takes advantage of specific host and environmental conditions. It is largely still unclear (gene expression) what specifically triggers the increase in disease incidence (infection) and lesion diameter (colonization) of P. digitatum on older or riper fruit. The differences between in vivo and in vitro studies make it difficult to directly correlate results. Additional research is still needed to differentiate and understand the infection and colonization of these pathogens on the same host.


Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (5) ◽  
pp. 21-28 ◽  
Author(s):  
CARL HOUTMAN ◽  
ERIC HORN

Pilot data indicate that wood chip pretreatment with oxalic acid reduced the specific energy required to make thermomechanical pulp. A combined oxalic acid/bisulfite treatment resulted in 21% refiner energy savings and 13% increase in brightness for aspen. A low level of oxalic acid treatment was effective for spruce. Energy savings of 30% was observed with no significant change in strength properties. Adding bisulfite did not significantly increase the brightness of the spruce pulp. For pine, the optimum treatment was a moderate level of oxalic acid, which resulted in 34% energy savings and an increase in strength properties. For all of these treatments 1–3 w/w % carbohydrates were recovered, which can be fermented to produce ethanol. The extract sugar solution contained significant quantities of arabinose.


2018 ◽  
Vol 69 (8) ◽  
pp. 1927-1933 ◽  
Author(s):  
Mariana Deleanu ◽  
Elisabeta E. Popa ◽  
Mona E. Popa

The compounds in Ginger (Zingiber officinale-Roscoe) essential oil provenience China and wild oregano (Origanum vulgare) essential oil of Romanian origin were identified by GC/MS and their antioxidant and antifungal properties were evaluated. Wild oregano oil was characterized by high content of oxygenated monoterpenes hydrocarbons (84.05%) of which carvacrol was the most abundant (73.85%) followed by b-linalool (3.46%) and thymol (2.29%). Ginger oil had a higher content of sesquiterpene hydrocarbons including zingiberene (31.47%), b-sesquiphellandrene (13.76%), a-curcumene (10.41%), a-farnesene (8.31%) and b-bisabolene (7.55%) but a lower content of oxygenated monoterpenes (7.97%). The high content of oxygenated monoterpens of wild oregano oil is in accordance with total content of polyphenols determined by the Folin�Ciocalteu method (6.71�0.73 mg of gallic acid equivalent per g oil). Ginger oil had only 1.34�0.22 mg gallic acid equivalent per g oil. Wild oregano oils exhibited appreciable in vitro antioxidant activity as assessed by 2, 2`-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and 2,2�-azino-bis (3 ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). The sample concentration required to scavenge 50% of the DPPH free radicals was 0.76�0.13 mg/mL for wild oregano oil compared to 20.22�2.12 mg/mL for ginger oil. Also, wild oregano oils showed significant inhibitory activity against selected pathogenic fungi (Fusarium oxysporum, Aspergillus flavus and Penicillium expansum). 1�L of oregano oil is sufficient for almost 75% growth inhibition of Aspergillus flavus compared to ginger oil which shows antifungal activity at 240�L for 78% growth inhibition. It can be concluded that wild oregano oil could be used as food preservative in some food products in which Fusarium oxysporum, Aspergillus flavus and Penicillium expansum could grow and have potential to produce health hazards mycotoxines.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 469a-469
Author(s):  
L.J. Skog ◽  
D.P. Murr ◽  
B.E. Digweed

Volatile compounds are ubiquitous in plants, giving fruits their characteristic aroma and flavor. There is increasing evidence that these compounds can protect plants from pathogenic organisms. In this trial ≈25 volatile compounds were tested for efficacy against Monilinia fructicola and Penicillium expansum. Both in vitro tests on agar plugs of actively growing pathogens and in situ tests on inoculated stone fruits and pears were conducted. The volatile compounds were grouped into three categories based upon fungicidal activity in vitro: highly effective (fungicidal concentration ≤100 M), moderately effective (fungicidal concentration between 100–200 M) and ineffective (fungicidal concentration >200 M). Highly effective compounds included: acetaldehyde, citral, 2-ethyl-1-hexanol, 2,exadienal, E-2-hexenal, 4-hexen-3-one, linalool, (E,E)2,4-nonadienal, E-2-nonenal, E-3-none-2-one, salicylaldehyde, and valeraldehyde. Moderately effective compounds included: (E,Z) 2,6-nonadienal, propionaldehyde, terpinene, butyl acetate, E-cinnamaldehde, hexanal, E-2-hexen-1-ol, Z-3-hexen-1-ol and isoamyl acetate. Ineffective compounds included: butyrolactone, ethanol, ethyl acetate, and methyl acetate. Effectiveness of the compounds varied with both strain and type of microorganism tested. Concentraions required for effective control were much higher when the compounds were tested on inoculated fruit. Phytotoxicity was a problem with some compounds.


2020 ◽  
Author(s):  
Madhur Kumar Dubey ◽  
Naman Jain ◽  
Atul Kumar ◽  
Gaurang Deep ◽  
Md Sharib

Sign in / Sign up

Export Citation Format

Share Document