Chemical Composition and Active Properties Evaluation of Wild Oregano (Origanum Vulgare) and Ginger (Zingiber Officinale-Roscoe) Essential Oils

2018 ◽  
Vol 69 (8) ◽  
pp. 1927-1933 ◽  
Author(s):  
Mariana Deleanu ◽  
Elisabeta E. Popa ◽  
Mona E. Popa

The compounds in Ginger (Zingiber officinale-Roscoe) essential oil provenience China and wild oregano (Origanum vulgare) essential oil of Romanian origin were identified by GC/MS and their antioxidant and antifungal properties were evaluated. Wild oregano oil was characterized by high content of oxygenated monoterpenes hydrocarbons (84.05%) of which carvacrol was the most abundant (73.85%) followed by b-linalool (3.46%) and thymol (2.29%). Ginger oil had a higher content of sesquiterpene hydrocarbons including zingiberene (31.47%), b-sesquiphellandrene (13.76%), a-curcumene (10.41%), a-farnesene (8.31%) and b-bisabolene (7.55%) but a lower content of oxygenated monoterpenes (7.97%). The high content of oxygenated monoterpens of wild oregano oil is in accordance with total content of polyphenols determined by the Folin�Ciocalteu method (6.71�0.73 mg of gallic acid equivalent per g oil). Ginger oil had only 1.34�0.22 mg gallic acid equivalent per g oil. Wild oregano oils exhibited appreciable in vitro antioxidant activity as assessed by 2, 2`-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and 2,2�-azino-bis (3 ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). The sample concentration required to scavenge 50% of the DPPH free radicals was 0.76�0.13 mg/mL for wild oregano oil compared to 20.22�2.12 mg/mL for ginger oil. Also, wild oregano oils showed significant inhibitory activity against selected pathogenic fungi (Fusarium oxysporum, Aspergillus flavus and Penicillium expansum). 1�L of oregano oil is sufficient for almost 75% growth inhibition of Aspergillus flavus compared to ginger oil which shows antifungal activity at 240�L for 78% growth inhibition. It can be concluded that wild oregano oil could be used as food preservative in some food products in which Fusarium oxysporum, Aspergillus flavus and Penicillium expansum could grow and have potential to produce health hazards mycotoxines.

2020 ◽  
Vol 50 (6) ◽  
Author(s):  
Samuel Botião Nerilo ◽  
Jéssica Cristina Zoratto Romoli ◽  
Lydiana Polis Nakasugi ◽  
Natana Souza Zampieri ◽  
Simone Aparecida Galerani Mossini ◽  
...  

ABSTRACT: Essential oils are possible alternatives to the use of synthetic pesticides for control of fungal contamination. Ginger (Zingiber officinale) essential oil (GEO) is known for having antifungal and antiaflatoxigenic properties, but its use as a fumigant in situ has not been studied yet. The aim of this study was to evaluate GEO’s effects upon Aspergillus flavus as a fumigant agent in stored maize grains. The main compounds reported in GEO were α-zingiberene (23.85%) and geranial (14.16%), characterized by gas chromatography-mass spectrometry and nuclear magnetic resonance. The GEO was used as a fumigant in irradiated maize grains in concentrations ranging from 5 to 50 µg/g and the resulting effects were compared to a synthetic antifungal agent (carbendazim and thiram), an antifungal traditionally used for seed treatment. The antifungal efficacy of GEO against A. flavus has been proven in a dose-dependent manner through in situ (maize grains) test. The GEO inhibited aflatoxin production at concentrations 25 and 50 µg/g and controlled fungal growth. Therefore, GEO can be used as an effective and non-toxic alternative to conventional treatments in stored maize grains for the natural control of A. flavus.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Jinyoung Hur ◽  
Yeonmi Lee ◽  
Chang Jun Lee ◽  
Ho-Young Park ◽  
Sang Yoon Choi

Abstract Ginger (Zingiber Officinale Roscoe) has been known reduce muscle pain after exercise, and 6-shogaol {(E)-1-(4-Hydroxy-3-methoxyphenyl)dec-4-en-3-one)} is the major essential oil contained in ginger. In this study, the protective effect of 6-shogaol on L6 muscle cells against oxidative damage was measured. 6-shagol inhibited the damage of L6 cell induced by H2O2, and allowed the increase in mRNA and protein expression levels of intracellular HO-1 and NRF2. 6-shogaol also reduced the production of intracellular ROS. These results suggested that 6-shagol effectively inhibits oxidative damage of skeletal muscle cell.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 595 ◽  
Author(s):  
Daniela Gruľová ◽  
Lucia Caputo ◽  
Hazem S. Elshafie ◽  
Beáta Baranová ◽  
Laura De Martino ◽  
...  

Searching for new bio-based herbicides is crucial for decreasing chemical pollution, protecting the environment, and sustaining biodiversity. Origanum vulgare is considered a promising source of essential oil with herbicidal effect. The mode of action is not known. The present study focused on (1) comparison of phytotoxic activity of Origanum vulgare EO on monocot (Triticum aestivum and Hordeum vulgare) and dicot species (Lepidium sativum and Sinapis alba); (2) and evaluating other antimicrobial biological activities against phytopatogen bacteria (Clavibacter michiganensis, Pseudomonas syringae pv. phaseolicola, Pseudomonas savastanoi, and Xanthomonas campestris); antifungal activity against Monilinia fructicola, Aspergillus niger, Penicillium expansum, and Botrytis cinerea; cytotoxic activity and antioxidant activity. According to the GC/MS analyses, the EO belongs to the thymol chemotype O. vulgare with its high content of thymol (76%). Germination of all four species was not influenced by EO. The phytotoxic effect was statistically significant in the monocot species, while in the dicot species the opposite was observed—a stimulation effect, which was also statistically significant. Strong biological activity of O. vulgare EO was noted on all phytopatogen bacteria and fungi in the highest dose. Cytotoxic activity showed an IC50 = 50.5 μg/mL. Antioxidant activity showed an IC50 = 106.6 μg/mL after 45 min experimental time. Based on the presented results, it is possible to conclude that thymol chemotype O. vulgare essential oil could be potentially used as a herbicide with selective effects on monocot plant species.


2011 ◽  
Vol 6 (1) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Suphla Gupta ◽  
Pankaj Pandotra ◽  
Gandhi Ram ◽  
Rajneesh Anand ◽  
Ajai Prakash Gupta ◽  
...  

The chemical composition of the essential oil from the rhizome of ginger ( Zingiber officinale Roscoe), collected from Nahan, Himachal Pradesh, India, was determined by gas chromatography and GC-MS. Fifty-one compounds, representing 95.1% of the oil, were identified. The oil was characterized by relatively large amounts of the monoterpenoids 1,8-cineole (10.9%), linalool (4.8%), borneol (5.6%), α-terpineol (3.6%), neral (8.1%), geraniol (14.5%), geranial (9.5%), trans-dimethoxy citral (5.0%) and geranyl acetate (6.3%). Five compounds, namely trans-linalool oxide, trans-linalool oxide acetate, ( Z)-dimethoxycitral, ( E)-dimethoxy citral and epi-zingiberenol are reported for the first time in oil of ginger.


Author(s):  
Shavilla Lukita ◽  
Winda Khosasi ◽  
Chandra Susanto ◽  
Florenly

Red ginger extract has a category strong antibacterial effect on Staphylococcusaureus and Streptococcus mutans. Red ginger essential oil has the potential forstronger inhibition. This study aims to compare the antibacterial effectiveness of redginger essential oil against Staphylococcus aureus and Streptococcus mutans. Thedesign of this study was a laboratory experimental design with a factorial completelyrandomized design. The red ginger used in this study was proven to be a species ofZingiber officinale Roscoe. The production of essential oils in this study uses thesteam distillation method. The content of secondary metabolites in red ginger wastested quantitatively by the GC-MS method. Determination of antibacterial activityusing the disc diffusion method. The data were processed using the SPSS 21.0program. The normality of data distribution was tested with the Shapiro-Wilk test,followed by one-way ANOVA, Levene's test, and the Tukey HSD Post Hoc Test. Theresults of the antibacterial test of red ginger essential oil against Staphylococcusaureus (21.21mm ± 0.315) and Streptoococcus mutans (23.43mm ± 0.189) provedthat the inhibition power of the category was very strong at a concentration of 75%.


Metabolites ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 414 ◽  
Author(s):  
Mario J. Simirgiotis ◽  
Daniel Burton ◽  
Felipe Parra ◽  
Jéssica López ◽  
Patricio Muñoz ◽  
...  

This study aimed to characterize the in vitro antioxidant and antibacterial properties of oregano (Origanum vulgare) essential oil, as well as its chemical composition. To our best knowledge, there are few studies on oregano grown in the arid Andes region, but none on the metabolites produced and their bioactivity. This work identified fifty metabolites by Gas Chromatography–Mass Spectrometry (GC-MS)—monoterpene hydrocarbons, oxygenated monoterpenes, phenolic monoterpenes, sesquiterpene hydrocarbons, and oxygenated sesquiterpenes—present in the essential oil of oregano collected in the Atacama Desert. The main components of essential oregano oil were thymol (15.9%), Z-sabinene hydrate (13.4%), γ-terpinene (10.6%), p-cymene (8.6%), linalyl acetate (7.2%), sabinene (6.5%), and carvacrol methyl ether (5.6%). The antibacterial tests showed that the pathogenic bacteria Staphylococcus aureus and Salmonella enterica and the phytopathogenic bacteria Erwinia rhapontici and Xanthomonas campestris were the most susceptible to oregano oil, with the lowest concentrations of oil necessary to inhibit their bacterial growth. Moreover, oregano oil showed antibacterial activity against bacteria associated with food poisoning. In conclusion, O. vulgare from the arid Andean region possesses an important antibacterial activity with a high potential in the food industry and agriculture.


1969 ◽  
Vol 22 (5) ◽  
pp. 1033 ◽  
Author(s):  
DW Connell ◽  
MD Sutherland

The dried rhizomes of ginger (Zingiber officinale Roscoe) yield, to acetone, a complex mixture of substances including a series of S-(+)- gingerols (i.e. 1-(4?- hydroxy-3?-methoxyphenyl)-5-hydroxyalkan-3-ones) with 10,12, and 14 carbon atom side-chains, essential oil, palmitic and other fatty acids, and other unidentified substances. The substances, shogaol and zingerone, described by Nomura as ginger constituents appear to be absent but are formed by the action of alkalis or heat on gingerol or the oleoresin. The gingerol with the 11-carbon side-chain, claimed by Lapworth, Pearson, and Royle as the principal pungent substance in ginger, is also absent. Ginger oleoresin may be qualitatively analysed by thin-layer chromatography on silica gel with hexane-ether (1 : 1).


Sign in / Sign up

Export Citation Format

Share Document