High temperature-short time glycation to improve heat stability of whey protein and reduce color formation

2015 ◽  
Vol 44 ◽  
pp. 453-460 ◽  
Author(s):  
Gang Liu ◽  
Qixin Zhong
Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 367 ◽  
Author(s):  
Laura Sáez ◽  
Eoin Murphy ◽  
Richard J. FitzGerald ◽  
Phil Kelly

Tryptic hydrolysis of whey protein isolate under specific incubation conditions including a relatively high enzyme:substrate (E:S) ratio of 1:10 is known to preferentially hydrolyse β-lactoglobulin (β-LG), while retaining the other major whey protein fraction, i.e., α-lactalbumin (α-LA) mainly intact. An objective of the present work was to explore the effects of reducing E:S (1:10, 1:30, 1:50, 1:100) on the selective hydrolysis of β-LG by trypsin at pH 8.5 and 25 °C in a 5% (w/v) WPI solution during incubation periods ranging from 1 to 7 h. In addition, the use of a pilot-scale continuous high-temperature, short-time (HTST) heat exchanger with an extended holding time (EHT) of 5 min as a means of inactivating trypsin to terminate hydrolysis was compared with laboratory-based acidification to <pH 3 by the addition of HCl, and batch sample heating in a water bath at 85 °C. An E:S of 1:10 resulted in 100% and 30% of β-LG and α-LA hydrolysis, respectively, after 3 h, while an E:S reduction to 1:30 and 1:50 led >90% β-LG hydrolysis after respective incubation periods of 4 and 6 h, with <5% hydrolysis of α-LA in the case of 1:50. Continuous HTST-EHT treatment was shown to be an effective inactivation process allowing for the maintenance of substrate selectivity. However, HTST-EHT heating resulted in protein aggregation, which negatively impacts the downstream recovery of intact α-LA. An optimum E:S was determined to be 1:50, with an incubation time ranging from 3 h to 7 h leading to 90% β-LG hydrolysis and minimal degradation of α-LA. Alternative batch heating by means of a water bath to inactivate trypsin caused considerable digestion of α-LA, while acidification to <pH 3.0 restricted subsequent functional applications of the protein.


2020 ◽  
Vol 328 ◽  
pp. 127126 ◽  
Author(s):  
Stefano Nebbia ◽  
Marzia Giribaldi ◽  
Laura Cavallarin ◽  
Enrico Bertino ◽  
Alessandra Coscia ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Diana Escuder-Vieco ◽  
Juan M. Rodríguez ◽  
Irene Espinosa-Martos ◽  
Nieves Corzo ◽  
Antonia Montilla ◽  
...  

Holder pasteurization (HoP; 62.5 °C, 30 min) is commonly used to ensure the microbiological safety of donor human milk (DHM) but diminishes its nutritional properties. A high-temperature short-time (HTST) system was designed as an alternative for human milk banks. The objective of this study was to evaluate the effect of this HTST system on different nutrients and the bile salt stimulated lipase (BSSL) activity of DHM. DHM was processed in the HTST system and by standard HoP. Macronutrients were measured with a mid-infrared analyzer. Lactose, glucose, myo-inositol, vitamins and lipids were assayed using chromatographic techniques. BSSL activity was determined using a kit. The duration of HTST treatment had a greater influence on the nutrient composition of DHM than did the tested temperature. The lactose concentration and the percentage of phospholipids and PUFAs were higher in HTST-treated than in raw DHM, while the fat concentration and the percentage of monoacylglycerides and SFAs were lower. Other nutrients did not change after HTST processing. The retained BSSL activity was higher after short HTST treatment than that following HoP. Overall, HTST treatment resulted in better preservation of the nutritional quality of DHM than HoP because relevant thermosensitive components (phospholipids, PUFAs, and BSSL) were less affected.


1999 ◽  
Vol 62 (8) ◽  
pp. 861-866 ◽  
Author(s):  
PUNIDADAS PIYASENA ◽  
ROBIN C. McKELLAR

Mathematical models describing the thermal inactivation of γ-glutamyl transpeptidase (TP) and Listeria innocua in milk during high-temperature short-time (HTST) pasteurization were validated with data from TP, L. innocua, and L. monocytogenes trials in guar gum–milk. Holding tube times were determined for turbulent flow using water, and for laminar flow using a guar gum (0.27% wt/wt)–sucrose (5.3% wt/wt)–water mixture. Inactivation of TP and L. innocua was lower in a solution of guar gum (0.25% wt/wt) in whole milk than was predicted by models derived from studies with whole milk alone. Use of laminar flow timings improved model fit but did not completely account for the observed protective effect. L. monocytogenes survival was close to that predicted by the L. innocua model, although some protection was afforded this pathogen under laminar flow. Considerable intertrial variability was noted for L. monocytogenes. Risk analysis simulations using @RISK, a Lotus 1-2–3W add-in, were used to account for intertrial variability. Simulated log10 %reductions consistently underpredicted experimental L. monocytogenes survival (fail-safe), thus the L. innocua model derived in milk is suitable for estimating L. monocytogenes survival in viscous products. Increased thermal tolerance during laminar flow may be attributed to the protective effect of stabilizer.


Sign in / Sign up

Export Citation Format

Share Document