Suppression mechanism of l-arginine in the heat-induced aggregation of bighead carp (Aristichthys nobilis) myosin: The significance of ionic linkage effects and hydrogen bond effects

2020 ◽  
Vol 102 ◽  
pp. 105596 ◽  
Author(s):  
Tong Shi ◽  
Zhiyu Xiong ◽  
Wengang Jin ◽  
Li Yuan ◽  
Quancai Sun ◽  
...  
2019 ◽  
Vol 295 ◽  
pp. 320-326 ◽  
Author(s):  
Ruichang Gao ◽  
Tong Shi ◽  
Quancai Sun ◽  
Xiuting Li ◽  
David Julian McClements ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1409
Author(s):  
Yiqi Zhang ◽  
Ye Dong ◽  
Zhiyuan Dai

Bone hydrolysates from bighead carp (Aristichthys nobilis) were prepared using Protamex and Alcalase with degrees of hydrolysis (DH) of 5%, 10% and 15%. The antioxidant activity of bone hydrolysates was evaluated in vitro and then the hydrolysates with better antioxidant activity were used to immerse bighead carp fillets through a vacuum impregnation process at concentrations of 1% and 2%. Among the six hydrolysates, fish bone hydrolyzed with Protamex at DH 10% exhibited the highest ability to scavenge 1, 1-diphenyl-2-picrylhydrazyl (DPPH) (88.79%), 2, 2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) (57.76%) and hydroxyl radicals (62.72%), as well as to chelate ferrous ions (91.46%). The hydrolysates effectively postponed freezing- and thawing-induced protein/lipid oxidation. Compared with the fillets without treatment, the impregnated fillets had higher sulfhydryl contents, greater Ca2+-ATPase activity, lower carbonyls and lower thiobarbituric acid-reactive substances (TBARS). Bone hydrolysates also have a positive effect on the texture and water-holding ability of freeze-thawed fish fillets. Fish bone hydrolysates of Protamex could serve as potential antioxidants to preserve fish fillets.


LWT ◽  
2008 ◽  
Vol 41 (2) ◽  
pp. 254-261 ◽  
Author(s):  
Rui-chang Gao ◽  
Chang-hu Xue ◽  
Li Yuan ◽  
Jin Zhang ◽  
Zhao-jie Li ◽  
...  

2008 ◽  
Vol 65 (4) ◽  
pp. 340-345 ◽  
Author(s):  
Jaqueline Ineu Golombieski ◽  
Enio Marchesan ◽  
Edinalvo Rabaioli Camargo ◽  
Joseânia Salbego ◽  
Joele Schmitt Baumart ◽  
...  

Sublethal adverse effects may result from exposure of aquatic organisms to insecticides at environmentally relevant concentrations. Fingerlings of the common carp (Cyprinus carpio, Linnaeus, 1758), grass carp (Ctenopharyngodon idella, Valenciennes, 1844), and bighead carp (Aristichthys nobilis, Richardson, 1845) were exposed to diafuran, an insecticide widely used during rice cultivation in Southern Brazil. The aim of this study was to verify the relationship between the lethal concentration (LC50) of diafuran and the acetylcholinesterase (AChE) activity in brain and muscle tissues of these species as a possible early biomarker of exposure to this insecticide. LC50 was determined for fish exposed to diafuran concentrations during 96 h (short term): common carp: control, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mg L-1; grass carp: control, 1.0, 2.0, 3.0 and 3.5 mg L-1 and, bighead carp: control, 0.5, 1.0, 1.5, 2.0, 3.0 and 4.0 mg L-1, as well as the determination of AChE at concentrations near LC50 for these species. LC50 values (nominal concentrations) were 1.81 mg L-1 for the common carp, 2.71 mg L-1 for the grass carp and, 2.37 mg L-1 for the bighead carp. All carps exposed to diafuran were lethargic (lower concentrations) or immobile. Diafuran inhibited the acetylcholinesterase activity in brain (~38%) and muscle (~50%) of all species. Muscle of bighead carp under control treatment showed higher specific AChE activity than brain (14.44 against 5.94 µmol min-1 g protein-1, respectively). Concentrations of diafuran used for rice cropping may affect Cyprinus carpio, Ctenopharyngodon idella and Aristichthys nobilis behaviors and the AChE activities in brain and muscle of these species may be an early biomarker of toxicity of this insecticide.


Sign in / Sign up

Export Citation Format

Share Document