Water sorption thermodynamic behavior of whey protein isolate/ polyvinyl alcohol blends for food packaging

2020 ◽  
Vol 103 ◽  
pp. 105710
Author(s):  
Bruna Rage Baldone Lara ◽  
Marali Vilela Dias ◽  
Mario Guimarães Junior ◽  
Paulo Sérgio de Andrade ◽  
Bruna de Souza Nascimento ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4278
Author(s):  
Fitriani Fitriani ◽  
Sri Aprilia ◽  
Nasrul Arahman ◽  
Muhammad Roil Bilad ◽  
Hazwani Suhaimi ◽  
...  

Among the main bio-based polymer for food packaging materials, whey protein isolate (WPI) is one of the biopolymers that have excellent film-forming properties and are environmentally friendly. This study was performed to analyse the effect of various concentrations of bio-based nanocrystalline cellulose (NCC) extracted from pineapple crown leaf (PCL) on the properties of whey protein isolate (WPI) films using the solution casting technique. Six WPI films were fabricated with different loadings of NCC from 0 to 10 % w/v. The resulting films were characterised based on their mechanical, physical, chemical, and thermal properties. The results show that NCC loadings increased the thickness of the resulting films. The transparency of the films decreased at higher NCC loadings. The moisture content and moisture absorption of the films decreased with the presence of the NCC, being lower at higher NCC loadings. The water solubility of the films decreased from 92.2% for the pure WPI to 65.5% for the one containing 10 % w/v of NCC. The tensile strength of the films peaked at 7% NCC loading with the value of 5.1 MPa. Conversely, the trend of the elongation at break data was the opposite of the tensile strength. Moreover, the addition of NCC produced a slight effect of NCC in FTIR spectra of the WPI films using principal component analysis. NCC loading enhanced the thermal stability of the WPI films, as shown by an increase in the glass transition temperature at higher NCC loadings. Moreover, the morphology of the films turned rougher and more heterogeneous with small particle aggregates in the presence of the NCC. Overall, the addition of NCC enhanced the water barrier and mechanical properties of the WPI films by incorporating the PCL-based NCC as the filler.


2019 ◽  
Vol 19 ◽  
pp. 16-23 ◽  
Author(s):  
Bruna Rage Baldone Lara ◽  
Ana Cristina Moreira Andrade Araújo ◽  
Marali Vilela Dias ◽  
Mario Guimarães ◽  
Taline Amorim Santos ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 705
Author(s):  
Yejun Zhong ◽  
Jincheng Zhao ◽  
Taotao Dai ◽  
Jiangping Ye ◽  
Jianyong Wu ◽  
...  

Protein–polyphenol interactions influence emulsifying properties in both directions. Puerarin (PUE) is an isoflavone that can promote the formation of heat-set gels with whey protein isolate (WPI) through hydrogen bonding. We examined whether PUE improves the emulsifying properties of WPI and the stabilities of the emulsions. We found that forming composites with PUE improves the emulsifying properties of WPI in a concentration-dependent manner. The optimal concentration is 0.5%, which is the highest PUE concentration that can be solubilized in water. The PUE not only decreased the droplet size of the emulsions, but also increased the surface charge by forming composites with the WPI. A 21 day storage test also showed that the maximum PUE concentration improved the emulsion stability the most. A PUE concentration of 0.5% improved the stability of the WPI emulsions against environmental stress, especially thermal treatment. Surface protein loads indicated more protein was adsorbed to the oil droplets, resulting in less interfacial WPI concentration due to an increase in specific surface areas. The use of PUE also decreased the interfacial tension of WPI at the oil–water interface. To conclude, PUE improves the emulsifying activity, storage, and environmental stability of WPI emulsions. This result might be related to the decreased interfacial tension of WPI–PUE composites.


Sign in / Sign up

Export Citation Format

Share Document