scholarly journals Food-grade hydroxypropyl methylcellulose-based formulations for electrohydrodynamic processing: Part I – role of solution parameters on fibre and particle production

2021 ◽  
pp. 106761
Author(s):  
P.M. Silva ◽  
C. Prieto ◽  
J.M. Lagarón ◽  
L.M. Pastrana ◽  
M.A. Coimbra ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 574
Author(s):  
Nikhat Perween ◽  
Sultan Alshehri ◽  
T. S. Easwari ◽  
Vivek Verma ◽  
Md. Faiyazuddin ◽  
...  

Molecules with poor aqueous solubility are difficult to formulate using conventional approaches and are associated with many formulation delivery issues. To overcome these obstacles, nanosuspension technology can be one of the promising approaches. Hence, in this study, the feasibility of mefenamic acid (MA) oral nanosuspension was investigated for pediatric delivery by studying the role of excipients and optimizing the techniques. Nanosuspensions of MA were prepared by adopting an antisolvent precipitation method, followed by ultrasonication with varying concentrations of polymers, surfactants, and microfluidics. The prepared nanosuspensions were evaluated for particle size, morphology, and rheological measures. Hydroxypropyl methylcellulose (HPMC) with varying concentrations and different stabilizers including Tween® 80 and sodium dodecyl sulfate (SLS) were used to restrain the particle size growth of the developed nanosuspension. The optimized nanosuspension formula was stable for more than 3 weeks and showed a reduced particle size of 510 nm with a polydispersity index of 0.329. It was observed that the type and ratio of polymer stabilizers were responsive on the particle contour and dimension and stability. We have developed a biologically compatible oral nanoformulation for a first-in-class drug beautifully designed for pediatric delivery that will be progressed toward further in vivo enabling studies. Finally, the nanosuspension could be considered a promising carrier for pediatric delivery of MA through the oral route with enhanced biological impact.


2003 ◽  
Vol 18 (04) ◽  
pp. 673-683
Author(s):  
M. T. HUSSEIN ◽  
N. M. HASSAN ◽  
W. ELHARBI

The multi-particle productions in neutrino–nucleon collisions at high energy are investigated through the analysis of the data of the experiment CERN-WA-025 at neutrino energy less than 260 GeV and the experiments FNAL-616 and FNAL-701 at energy range 120–250 GeV. The general features of these experiments are used as base to build a hypothetical model that views the reaction through a Feynman diagram of two vertices. The first of which concerns the weak interaction between the neutrino and the quark constituents of the nucleon. At the second vertex, a strong color field is assumed to play the role of particle production, which depend on the momentum transferred from the first vertex. The wave functions of the nucleon constituent quarks are determined using the variation method and relevant boundary conditions are applied to calculate the deep inelastic cross sections of the virtual diagram.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2553 ◽  
Author(s):  
Alessandra Ricelli ◽  
Martina De Angelis ◽  
Ludovica Primitivo ◽  
Giuliana Righi ◽  
Carla Sappino ◽  
...  

Ochratoxin A (OTA) is a mycotoxin with a serious impact on human health. In Mediterranean countries, the black Aspergilli group, in particular Aspergillus carbonarius, causes the highest OTA contamination. Here we describe the synthesis of three polyphenolic flavonoids: 5-hydroxy-6,7-dimethoxy-flavone (MOS), 5,6-dihydroxy-7-methoxy-flavone (NEG), and 5,6 dihydroxy-flavone (DHF), as well as their effect on the prevention of OTA biosynthesis and lipoxygenase (LOX) activity in A. carbonarius cultured in a conducive liquid medium. The best control effect on OTA biosynthesis was achieved using NEG and DHF. In fungal cultures treated with these compounds at 5, 25, and 50 μg/mL, OTA biosynthesis significantly decreased throughout the 8-day experiment. NEG and DHF appear to have an inhibiting effect also on the activity of LOX, whereas MOS, which did not significantly inhibit OTA production, had no effect on LOX activity. The presence of free hydroxyls in catecholic position in the molecule appears to be a determining factor for significantly inhibiting OTA biosynthesis. However, the presence of a methoxy group in C-7 in NEG could slightly lower the molecule’s reactivity increasing OTA inhibition by this molecule at 5 μg/mL. Polyphenolic flavonoids present in edible plants may be easily synthesized and used to control OTA biosynthesis.


Author(s):  
Hualu Zhou ◽  
Janam K. Pandya ◽  
Yunbing Tan ◽  
Jinning Liu ◽  
Shengfeng Peng ◽  
...  
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Karina D. Martínez ◽  
Ana M. R. Pilosof

The complex mixture studied, a hydrolyzed soy protein (HSP), κ-carrageenan (κC), and an hydroxypropyl methylcellulose (HPMC), could be used as a foaming agent under refrigeration or heating conditions because of the presence of one polysaccharide (HPMC) that gels on heating and another (κC) that gels on cooling. The objective of this work was to study the role of these polysaccharides on foaming properties by whipping methods at heating conditions. For this purpose, response surface methodology was used to optimize the mixed product in foamed food systems. The obtained results showed that the combination of E4M, κC, and HSP is an adequate strategy to generate good foam capacity and stability at heating conditions. The huge stability increase of foams at heating conditions was ascribed to combined effect of polysaccharides: gelling property of E4M and the viscozieng character imparted by κC to continuous phase of foaming.


Sign in / Sign up

Export Citation Format

Share Document